

Irrigation Modernization and Design of Pipe Distribution Networks

TOTAL LIFE COSTS

This is not an ADB material. The views expressed in this document are the views of the author/s and/or their organizations and do not necessarily reflect the views or policies of the Asian Development Bank, or its Board of Governors, or the governments they represent. ADB does not guarantee the accuracy and/or completeness of the material's contents, and accepts no responsibility for any direct or indirect consequence of their use or reliance, whether wholly or partially. Please feel free to contact the authors directly should you have queries.

Cost Effective Design for Pumped Systems must consider Lifetime Cost

- Low construction costs requires small pipes, but this means high pipe flow velocities, pumping pressures, and high energy costs.
- To optimize a design, the "total" costs, i.e., the sum of the construction costs and the discounted energy costs over ~25 years, should be calculated and compared for various design alternatives.
- The most cost-effective design is likely to be achieved for flow velocities in the pipes of 0.7-1.5 m/s.

Power Required & Energy Cost

$$P(kw) = \frac{Q(l/s) \times Ht(m)}{102 \times e1 \times e2}$$

• Q is the pumped discharge (I/s)

- Ht the pumping head, comprising static lift and friction losses (m)
- e1 the pump efficiency (in the order of 0.6–0.8 for new pumps)
- e2 the motor efficiency (0.7–0.9 for electric motors)

ENERGY USED = POWER X DURATION OF PUMPING

ENERGY COST = ENERGY TARIFF X ENERGY USED

Solar

- Grid connected solar can reduce energy costs
- Solar will usually only meet a proportion of peak power requirement
- Solar panels: 150W/m²
- Cost: \$0.30/ Watt

nhc

water resource specialists

Cost of solar modules

nhc

water resource specialists

Exercise: Pumping Cost for Pump Pressure Scheme and Total Life Cost for HLC PDN-1

- Step 1: Calculate power requirement (e1=0.8, e2=0.8).
- Step 2: Calculate energy requirement and annual cost of energy for scheme. Adopt: (i) duration of pumping to give 485 mm over command area, and (ii) energy cost of \$0.055/kWh

$$P(kw) = \frac{Q(l/s) \times Ht(m)}{102 \times e1 \times e2}$$

Power and Energy Requirements					
Head at pumping location	675.0	m			
Ground Elevation	642.0	m			
Pressure head	33.0	m			
Suction head	2.0	m			
Total pumping head	35.0	m			
Design flow	344.5	l/s			

Energy Required				
Pumping duration	18.0	hours	peak month	
Factor	0.3		All months	
	1,971	hours		
Command area	503.5	ha		
Volume pumped	2,444,434	m3		
	485 n	mm over command area for the year		
Energy Required	364,052	kWh/ year		
Unit cost of energy	15.2	PKR/kWh	Agric use	
	0.055	\$/kWh		278
Energy charge	5,533,595	PKR/ year		
Annual cost of power	5,533,595	PKR		
	19,905	\$		
	0.008	\$/m3		
	10,990	PKR/ha per year		
	39.5	\$/ha per year		

nhc

- Step 3: Discount annual cost of energy over 30 years to determine netpresent cost, in \$ and \$/ha. Adopt:
 - Net CA of 503 ha
 - NPV function (excel)
 - Discount rate of 5%

nhc

Total Life Cost of Pressure PDN System

Capital Investment Cost Cost of Pipes: \$187,834, \$373/ha Cost of Scheme: \$469,584, \$933/ha (60% of total life cost)

Energy Cost Annual cost of energy: \$ 19,978 Net present cost at 5% discount rate: \$305,989, \$ 608/ha (40% of total life cost)

Total life Cost: \$ 775,573, \$ 1,540/ha

Discounte	d energy co	osts	
Area	504		
USD/ha	40		
		Discount rate:	5.0%
Year	Cost	NP Value, USD:	305,989
1	19,905	USD/ha	608
2	19,905		
3	19,905		
4	19,905		
5	19 <i>,</i> 905		
6	19,905		
7	19 <i>,</i> 905		
8	19,905		
9	19,905		
10	19,905		
11	19,905		
12	19,905		
13	19,905		
14	19,905		
15	19,905		
16	19,905		
17	19,905		
18	19,905		
19	19,905		
20	19,905		
21	19,905		
22	19,905		
23	19,905		
24	19,905		
25	19,905		
26	19,905		
27	19,905		
28	19,905		
29	19,905		
30	19,905		

nhc