JCM_PH_PM0XX_ver01.0 Sectoral scope: 15

Joint Crediting Mechanism Proposed Methodology PH_PM0XX "Methane Emission Reduction by Water Management in Rice Paddy Fields"

A. Title of the methodology

Methane Emission Reduction by Water Management in Rice Paddy Fields

B. Terms and definition

Taura	Definition	
Terms	Definitions	
Drainage	A drainage is considered fully completed when the water	
	level is observed to reach15cm below the soil surface.	
	*The above requirements do not apply to the end-of-season	
	drainage.	
	*In case the water level does not reach 15cm below the soil	
	surface, a drainage may be deemed fully completed under the	
	following condition, however, such drainage is only perceived as	
	a single drainage even if the conditions are met multiple times in	
	one cropping season.	
	The water level is below the soil surface between 0 cm and -15	
	cm for a total of 10 days consisting of at least 3 consecutive days.	
	This condition is demonstrated by observation on the first and last	
	days of consecutive days when the water level is observed to be	
	below the soil surface, and either 1) observation on every 3 days	
	when the water level stays below the soil surface or 2)	
	precipitation data which indicates there is no precipitation during	
	those consecutive days	
Single Drainage	Fields have a single drainage event and period of time	
	without flooded conditions during the cropping season at	
	any growth stage, in addition to the end of season drainage.	
Multiple Drainage	Fields have more than one drainage event and period of	
	time without flooded conditions during the cropping season,	
	in addition to an end of season drainage, including alternate	
	wetting and drying (AWD).	

C. Summary of the methodology

Items	Summary		
GHG emission reduction	CH4 emission reductions achieved through change of water		
measures	management scheme of rice paddy field, while		
	increases/decreases of N_2O and CO_2 emissions are also		
	considered. Uncertainty concerning both reference and project		
	emissions are conservatively addressed through Uncertainty		
	deduction (Ud) values.		
Calculation of reference	Reference emissions are calculated based on $\ CH_4 \mbox{ and } N_2O$		
emissions	emissions in reference fields in the same cultivation and		
	environmental conditions including pre-season water regime,		
	soil type, and amount and type of organic amendment of project		
	rice paddy field. Direct measurement is used to estimate		
	reference CH_4 and N_2O emissions. Country specific values for		
	calculating CH4 emissions can also be used subject to cross-		
	checking of the values obtained from direct measurement. N_2O		
	emissions can also be calculated from the amount of fertilizer		
	applied. CO_2 emissions from the use of irrigation and drainage		
	pumps are optional for counting and calculated based on fuel		
	consumption of the pumps.		
Calculation of project	Project emissions are calculated based on CH_4 and N_2O		
emissions	emission in project fields. Direct measurement is used to		
	estimate project CH4 and N2O emissions. Country specific		
	values for calculating CH ₄ emissions can also be used subject to		
	cross-checking of the values obtained from direct measurement.		
	N_2O emissions can also be calculated from the amount of		
	fertilizer applied. CO ₂ emissions from the use of drainage		
· · · · · · · · · · · · · · · · · · ·	pumps for draining water from rice paddy fields are counted		
	while those from the use of irrigation pumps are optional for		
	counting. CO ₂ emissions are calculated based on fuel		
	consumption of the pumps.		
Monitoring parameters	• CH ₄ and N ₂ O emissions from rice paddy fields by changing		
	water regime.		
	• Application rate of fertilizer		
	• Areas of project fields of each stratum.		
	• Fuel consumption of drainage pumps (Fuel consumption of		

	irrigation pumps are optional).
--	---------------------------------

D. Eligibility criteria			
This methodology is applicable to projects that satisfy all of the following criteria.			
Criterion 1	The project field is rice paddy field that changes water regime ¹ during		
	cultivation period from continuously flooded to single or multiple		
	drainage, or from single to multiple drainage.		
	For the former, farmers have not conducted single or multiple drainage		
	in the past 2 years prior to the start of the project, and for the latter,		
	farmers have not conducted multiple drainage in the past 2 years prior to		
	the start of the project.		
Criterion 2	A drainage is considered fully completed when the water level is		
	observed to reach 15cm below the soil surface. To maintain yield, an		
	irrigation is carried out within 2 days after the completion of the		
	drainage.		
	*The above requirements do not apply to the end of season drainage.		
	*In case the water level does not reach 15cm below the soil surface, a drainage		
	may be deemed fully completed under the following condition, however, such		
	drainage is only perceived as a single drainage even if the conditions are met		
	multiple times in one cropping season.:		
	The water level is below the soil surface between 0 cm and -15 cm for a total of		
	10 days consisting of at least 3 consecutive days. This condition is demonstrated		
	by observation on the first and last days of consecutive days when the water		
	level is observed to be below the soil surface, and either 1) observation on every		
	3 days when the water level stays below the soil surface or 2) precipitation data		
	which indicates there is no precipitation during those consecutive days.		
	Methods to demonstrate conditions for water level of 15cm below the soil		
	surface or periods in which the water level stays below the soil surface are		
	detailed in Appendix C.		
	Methods other than those mentioned above may be applied subject to prior		
	expert review as described in the Appendix C.		
Criterion 3	Single or multiple drainage is not required by the local or national		
	legislation at the project field.		

¹ For supplemental information on water management of rice paddy fields in this methodology, refer to Appendix B

E. Emission Sources and GHG types

Reference emissions		
Emission sources	GHG types	
CH ₄ generated from rice paddy field due to activity of microorganism	CH ₄	
under anaerobic soil condition.		
N ₂ O emissions from fertilizer application.	N ₂ O	
CO ₂ emissions due to the utilization of drainage pumps used to drain	CO ₂	
water from rice paddy fields are optional.		
CO ₂ emission due to utilization of irrigation pumps are optional.	CO ₂	
Project emissions		
Emission sources	GHG types	
CH ₄ generated from rice paddy field due to activity of microorganism	CH ₄	
in condition of anerobic condition.		
N ₂ O emissions from fertilizer application.	N ₂ O	
CO ₂ emissions due to the utilization of drainage pumps used to drain	CO ₂	
water from rice paddy fields.		
CO ₂ emission due to utilization of irrigation pumps are optional.	CO ₂	

F. Establishment and calculation of reference emissions

F.1. Establishment of reference emissions

Reference emissions are calculated based on CH_4 and N_2O emissions in reference fields in the same conditions including pre-season water regime, soil type, and amount and type of organic amendment of project rice paddy field. Direct measurement is used to estimate reference CH_4 and N_2O emissions. Country specific values for calculating CH_4 emissions can also be used subject to cross-checking of the values obtained from direct measurement.

In the Philippines, continuous flooding, or single drainage in some limited regions, for rice cultivation is commonly practiced as the multiple drainage method for rice cultivation requires additional project site preparation. In addition, there are farmers who perceive the drainage of water from rice paddies could potentially reduce yields. As a result, water management schemes which involve drainage have not been practiced in many parts of the country. Business as usual (BaU) practice, which is continuous flooding, or single drainage in some

limited regions, results in CH₄ emissions due to anaerobic decomposition of organic matter from flooded rice paddies and N₂O emissions from fertilizer application.

 CO_2 emissions due to drainage pumps are counted, while those from irrigation pumps are optional for counting as emissions from use of irrigation pumps tend to decrease when drainage is conducted. CO_2 emissions from the utilization of mechanical devices and farm equipment are not counted as such emissions occur both in reference and project cases.

To assure conservativeness of the methodology, an uncertainty deduction factor is applied to emission reductions.

F.2. Calculation of reference emissions

$$RE_p = RE_{CH4,p} + RE_{N20,p} + RE_{CO2,p}$$

Where:

 RE_p = Reference emissions during the period p (tCO₂e/p)

 $RE_{CH4,p}$ = Reference emissions of CH₄ during the period p (tCO₂e/period)

 $RE_{N2O,p}$ = Reference emissions of N₂O during the period p (tCO₂e/period)

 $RE_{CO2,p}$ = Reference emission of CO₂ during the period p (tCO₂/period)

1. CH₄ emissions

Regarding CH₄ emissions, project participants may choose one option from 1) or 2) below.

1) Direct Measurement

Reference emissions are calculated based on the monitored CH_4 emissions measured at reference field in the same condition (stratum) of soil type, water regime pre-season and organic amendment of project site. Reference emissions are calculated separately for the dry and wet seasons if both seasons are targeted.

The reference emissions are calculated as shown in the equations below. Reference emissions of CH₄ in cropping season *s* ($RE_{CH4,s}$) is calculated based on the averaged seasonal total emissions or multiplying daily emissions and the number of days. The calculation method for seasonal total emissions and daily emissions based on the measured data is shown in the Appendix A.

$$RE_{CH4,p} = \sum_{s=1}^{S} RE_{CH4,s}$$

$$RE_{CH4,s} = \sum_{st=1}^{ST} (EF_{CH4,R,s,st} \times A_{s,st}) \times 10^{-3} \times GWP_{CH4}$$

or
$$RE_{CH4,s} = \sum_{st=1}^{ST} \sum_{f=1}^{F} (EF_{CH4,R,s,d,st} \times D_{s,st,f} \times A_{s,st,f}) \times 10^{-3} \times GWP_{CH4}$$

 $RE_{CH4,p}$ = Reference emissions of CH₄ during the period p (tCO₂e/period)

 $RE_{CH4,s}$ = Reference emissions of CH₄ in cropping season s (tCO₂e/season)

 $EF_{CH4,R,s,st}$ = Reference emission factor of CH₄ in stratum *st* in cropping season *s* (kgCH₄/ha/season)

 $A_{s,st}$ = Area of project fields of stratum *st* in cropping season *s* (ha)

 $EF_{CH4,R,s,d,st}$ = Reference emission factor of CH₄ per day in stratum *st* in cropping season *s* (kgCH₄/ha/day)

 $D_{s,st,f}$ = Total number of days under the project in cropping season s in field f of stratum st (days/season)

 $A_{s,st,f}$ = Area of project field f of stratum st in cropping season s (ha)

 GWP_{CH4} = Global warming potential of CH₄ (tCO₂e/tCH₄): 28.0

- st = Index for stratum *st*, covers all project fields with the same cultivation pattern as determined in Table 1. (*ST* = total number of stratum)
- s = Index for cropping season (S = total number of cropping season during a period under the project)

f = Index for project filed in stratum st (F = total number of fields in stratum st)

In the measurement, three representative fields need to be chosen in each stratum. At least two chambers are arranged in each of three fields, and the total area covered by the chambers in each field should be greater than or equal to 0.25 m^2 . See Appendix A for more detailed information. The stratification of all project fields is defined in the following table.

Table 1: Parameters for definition of stratification

Parameter	Categories	Element
Water regime on-season	Continuously flooded	w1
	Single Drainage	w2
	Multiple Drainage	w3

Water regime pre-season	Flooded	p1
	Short drainage (<180 d)	p2
	Long drainage (≥180 d)	p3
Soil type	Andosols	s1
	Histosols	s2
	Thionic soils*	s3
	Other soils	s4
Organic amendment (type)	Straw on-season	o1
	Straw off-season	o2
	Green manure	o3
	Farm yard manure	o4
	Compost	05
	No organic amendment (only low stamps are	06
	left after harvesting or straw is almost burnt	
	after burning at the site)	
Application rate for straw	Low rate (high stamps are left after	q1
amendment	harvesting or some portion of straw is left	
	after burning at the site)	
	High rate (almost all straw is left at the site)	q2

* Rice growth in thionic soils (actual or potential acid sulfate soils) can be inhibited by several factors, including the produced hydrogen sulfide and the lowered pH (<4) after drainage. Project participants should make a prior assessment if using fields of thionic soils to avoid rice yield loss.

2) Country Specific Emission Factor Combined with Direct Measurements

Project participants select more conservative values from either the country specific emission factors for CH₄ emission in dry season and wet season in the Philippines combined with the latest IPCC default scaling factors or direct measurement shown in 1). See the section 5 of Appendix C for more detailed information.

The reference emissions are calculated as follows:

$$RE_{CH4,p} = \sum_{s=1}^{s} RE_{CH4,s}$$

$$RE_{CH4,p} = \sum_{st=1}^{s} \sum_{f=1}^{r} (EF_{CH4,R,s,d,st} \times D_{s,st,f} \times A_{s,st,f}) \times 10^{-3} \times GWP_{CH4}$$

$$EF_{CH4,R,s,d,st} = EF_{CH4,c,s,d} \times SF_{R,w} \times SF_{p} \times SF_{o}$$
Where:
$$RE_{CH4,p} = \text{Reference emissions of CH4 during the period p (tCO_2e/period)}$$

$$RE_{CH4,s,d,w} = \text{Reference emissions of CH4 in cropping season s (tCO_2e/season)}$$

$$EF_{CH4,R,s,d,w} = \text{Reference emissions of CH4 in cropping season s (tCO_2e/season)}$$

$$EF_{CH4,R,s,d,w} = \text{Reference emissions factor of CH4 per day in stratum st in cropping season s (kgCH4/ha/day)}$$

$$D_{s,wf} = \text{Total number of days under the project in cropping season s in field f of stratum st (days/season)$$

$$A_{s,x4f} = \text{Area of project field f of stratum st in cropping season s (ha)}$$

$$GWP_{CH4} = \text{Global warming potential of CH4 (tCO_2e/tCH4): 28.0}$$

$$EF_{CH4,csd} = \text{Emission factor of CH4 per day for continuously flooded fields without organic amendments in cropping season s (kgCH4/ha/day) for dry season or 2.95 (kg/ha/day) for wet season in the Philippines.$$

$$SF_{Rw} = \text{Reference scaling factors to account for the differences in water regime during the cultivation period: 1 for continuous flooding.$$

$$SF_{Rw} = \text{Reference scaling factors to account for the differences in on-flooded pre-season >180 d, 2.41 for flooded pre-season (>30 d), and 0.59 for non-flooded pre-season >365 d$$

$$SF_{sys} = \text{Scaling factors to account for the differences in both type and amount of organic amendment applied}$$

$$st = \text{Index for stratum st, covers all project fields with the same cultivation pattern as determined in Table 1. (ST = total number of cropping season during a period under the project)$$

$$f = \text{Index for project field in stratum st} (F = total number of fields in stratum st)$$

$$SF_o = \left(1 + \sum_{i=1}^{I} ROA_i \times CFOA_i\right)^{0.59}$$

- SF_{o} = Scaling factors to account for the differences in both type and amount of organic amendment applied
- ROA_i = Application rate of organic amendment *i*, in dry weight for straw and fresh weigh for others (t/ha)
- $CFOA_i$ = Conversion factor for organic amendment *i* (in terms of its relative effect with respect to straw applied shortly before cultivation)
- i = Index for type of organic amendment (I = total number of organic amendment types)

3) Frequency and Timing of Measurements

Measurement is conducted at least once a week.

The timing of measurements is three consecutive years either from one year prior to or at the start of the project implementation. The following measurements are carried out every three to five years, and depending on the frequency, uncertainty deduction values change for each frequency, which is detailed in Section H. below.

a) Direct Measurement

Measurement frequency

Once within 3 years

Once every 4 to 5 years

b) Country Specific Emission Factor Combined with Direct Measurements

Measurement frequency

Once within 5 years

- 2. N₂O emissions
- 1) Direct measurement

$$RE_{N2O,p} = \sum_{s=1}^{S} RE_{N2O,s}$$

$$RE_{N2O,s} = \sum_{st=1}^{ST} \left(EF_{N2O,R,s,st} \times A_{s,st} \right) \times 10^{-3} \times GWP_{N2O}$$

 $RE_{N2O,p}$ = Reference emissions of N₂O during the period p (tCO₂e/period)

 $RE_{N2O,s}$ = Reference emissions of N₂O in cropping season s (tCO₂e/season)

 $EF_{N2O,R,s,st}$ = Reference emission factor of N₂O in stratum *st* in cropping season *s* (kgN₂O/ha/season)

 $A_{s,st}$ = Area of project fields of stratum st in cropping season s (ha)

 GWP_{N2O} = Global warming potential of N₂O (tCO₂e/tN₂O): 265

- st = Index for Stratum st, covers all project fields with the same cultivation pattern as determined in Table 1. (ST = total number of stratum)
- s = Index for cropping season (S = total number of cropping season in a year under the project)

2) Emission Factor for Fertilizer

Reference emission of N_2O from project area is calculated using the conventional application rate of N fertilizer in the reference area that is obtained from reliable source of information.

The reference emission is calculated as follows;

$$RE_{N2O,p} = \sum_{s=1}^{5} RE_{N2O,s}$$

$$RE_{N20,s} = \sum_{st=1}^{31} ((Q_{N20,R,s,st} \times A_{s,st}) \times EF_{N20,C} \times 44/28) \times 10^{-3} \times GWP_{N20}$$

Where,

 $RE_{N20,p}$ = Reference emissions of N₂O during the period p (tCO₂e/period)

 RE_{N2O_s} = Reference emissions of N₂O in cropping season s (tCO₂e/season)

 $Q_{N2O,R,s,st}$ = Application rate of N-input in the referce field of stratum *st* in cropping season *s* (kg N input/ha/season)

 $EF_{N20,C}$ = Emission factor of N₂O for continuous flooding: 0.003 kg N₂O-N/kg N input

 $A_{s,st}$ = Area of project fields of stratum *st* in cropping season *s* (ha)

 GWP_{N2O} = Global warming potential of N₂O (tCO₂e/tN₂O): 265

3) Frequency and Timing of Measurements

Measurement is conducted at least once a week.

The timing of measurements is three consecutive years either from one year prior to or at the

start of the project implementation. The following measurements are carried out every three to five years, and depending on the frequency, uncertainty deduction values change for each frequency, which is detailed in Section H. below.

a) Direct Measurement

Measurement frequency

Once within 3 years

Once every 4 to 5 years

b) Country Specific Emission Factor

Measurement frequency

Once within 5 years

3. CO₂ emissions

CO2 emissions due to drainage pumps and irrigation pumps are optional for counting.

Reference CO₂ emissions are calculated as follows:

$$RE_{CO2,p} = \sum_{i=1}^{n} (EF_{fuel,i} \times Q_{F,i,p})$$

Where:

 $RE_{CO2,p}$ = Reference emission of CO₂ during the period *p* (tCO₂/period)

 $Q_{F,i,p}$ = Quantity of fuel type *i* during the period *p* (quantified as energy input) (TJ/period)

 $EF_{fuel,i}$ = Emission factor of fuel type *i* based on IPCC guidelines (tCO₂e/TJ)

G. Calculation of project emissions

 $PE_p = PE_{CH4,p} + PE_{N2O,p} + PE_{CO2,p}$

Where:

 PE_p = Project emissions during the period p (tCO₂e/period) $PE_{CH4,p}$ = Project emissions of CH₄ during the period p (tCO₂e/period) $PE_{N20,p}$ = Project emissions of N₂O during the period p (tCO₂e/period) $\underline{PE_{CO2,p}}$ = Project emission of CO₂ during the period p (tCO₂e /period)

1. CH₄ emissions

1) Direct Measurement

CT

Project emissions are calculated in the same manner as he reference emissions. The measurement is conducted in three representative fields elected from each stratum.

$$PE_{CH4,p} = \sum_{s=1}^{S} PE_{CH4,s}$$

$$PE_{CH4,s} = \sum_{st=1}^{5} (EF_{CH4,P,s,st} \times A_{s,st}) \times 10^{-3} \times GWP_{CH4}$$

or

$$PE_{CH4,s} = \sum_{st=1}^{SI} \sum_{f=1}^{F} (EF_{CH4,P,s,d,st} \times D_{s,st,f} \times A_{s,st,f}) \times 10^{-3} \times GWP_{CH4}$$

Where:

 $PE_{CH4,p}$ = Project emissions of CH₄ during the period p (tCO₂e/period)

 $PE_{CH4,s}$ = Project emissions of CH₄ in cropping season s (tCO₂e/season)

 $EF_{CH4,P,s,st}$ = Project emission factor of CH₄ in stratum *st* in cropping season *s* (kgCH₄/ha/season)

 $A_{s,st}$ = Area of project fields of stratum *st* in cropping season *s* (ha)

- $EF_{CH4,P,s,d,st}$ = Project emission factor of CH₄ per day in stratum *st* in cropping season *s* (kgCH₄/ha/day)
- $D_{s,st,f}$ = Total number of days under the project in cropping season s in field f of stratum st (days/season)

 $A_{s,st,f}$ = Area of project field f of stratum st in cropping season s (ha)

 GWP_{CH4} = Global warming potential of CH₄ (tCO₂e/t CH4): 28.0

st = Index for stratum st, covers all project fields with the same cultivation pattern as determined in Table 1. (ST = total number of stratum)

s = Index for cropping season (S = total number of cropping season in a year under the project)

f = Index for project filed in stratum st (F = total number of fields in stratum st)

2) Country Specific Emission Factor Combined with Direct Measurements

$$\begin{aligned} & PE_{CH4,p} = \sum_{s=1}^{s} PE_{CH4,s} \\ & PE_{CH4,p} = \sum_{s=1}^{s} \sum_{r=1}^{p} (EF_{CH4,P,s,d,sl} \times D_{s,sl,f} \times A_{s,sl,f}) \times 10^{-3} \times GWP_{CH4} \\ & EF_{CH4,P,s,d,g} = EF_{CH4,c,s,d} \times SF_{P,w} \times SF_{p} \times SF_{0} \\ & Where: \\ & PE_{CH4,p} = Project emissions of CH4 during the period p (tCO.e/period) \\ & PC_{CH4,p} = Project emissions of CH4 in cropping season s (tCO,e/season) \\ & PC_{CH4,p} = Project emission factor of CH4 per day in stratum st in cropping season s (kgCH4/ha/day) \\ & D_{s,kf} = Area of project field f of stratum st in cropping season s (that during the period p (tCO.e/period) \\ & PC_{CH4,ex,ds} = Project emission factor of CH4 per day in stratum st in cropping season s (kgCH4/ha/day) \\ & D_{s,kf} = Area of project field f of stratum st in cropping season s (that (tay) season) \\ & M_{s,kf} = Area of project field f of stratum st in cropping season s (ta) \\ & GWP_{CH4} = Global warming potential of CH4 (tCO_{2}e't CH4): 28.0 \\ & EF_{CH4,ex,d4} = Emission factor of CH4 per day for continuously flooded fields without organic amendments in season s (kgCH4/ha/day): 1.46 (kg/ha/day) for dry season or 2.95 (kg/ha/day) for wet season in the Philippines. \\ & SF_{p,w} = Project scaling factors to account for the differences in water regime during the cultivation period: 0.55 for multiple drainage periods or 0.71 for single drainage period. \\ & SF_{p} = Scaling factors to account for the differences in water regime in the pre-season before the cultivation period: 1.00 for non-flooded preseason <180 d, 0.89 for non-flooded pre-season second the cultivation period: 1.00 for non-flooded preseason <180 d, 0.89 for non-flooded pre-season second the cultivation period: 1.05 T total number of cropping season during a period under the project) \\ & = Index for stratum st, covers all project fields with the same cultivation pattern as determined in Table 1. (ST - total number of fields in stratum st) \\ & (F_{p} = \left(1 + \sum_{i=1}^{t} ROA_i \times CFOA_i\right)^{0.59} \right) \\ & = Project fi$$

- SF_{o} = Scaling factors to account for the differences in both type and amount of organic amendment applied
- ROA_i = Application rate of organic amendment *i*, in dry weight for straw and fresh weigh for others (t/ha)
- $CFOA_i$ = Conversion factor for organic amendment *i* (in terms of its relative effect with respect to straw applied shortly before cultivation)
- i = Index for type of organic amendment (I = total number of organic amendment types)

2. N₂O missions

1) Direct measurement

$$PE_{N2O,p} = \sum_{s=1}^{S} PE_{N2O,s}$$

$$PE_{N2O,s} = \sum_{st=1}^{ST} (EF_{N2O,P,s,st} \times A_{s,st}) \times 10^{-3} \times GWP_{N2O}$$

Where:

 $PE_{N2O,p}$ = Project emissions of N₂O during the period p (tCO₂e/period)

 $PE_{N2O,s}$ = Project emissions of N₂O in cropping season s (tCO₂e/season)

 $EF_{N2O,P,s,st}$ = Project emission factor of N₂O in stratum *st* in cropping season *s* (kgN₂O/ha/season)

 $A_{s,st}$ = Area of project fields of stratum *st* in cropping season *s* (ha)

 $GWP_{N2O} = Global$ warming potential of N₂O (tCO₂e/tN₂O): 265

- st = Index for stratum st, covers all project fields with the same cultivation pattern as determined in Table 1. (ST = total number of stratum)
- s = Index for cropping season (S = total number of cropping season in a year under the project)

2) Emission Factor for Fertilizer

$$PE_{N2O,p} = \sum_{s=1}^{S} PE_{N2O,s}$$

$$PE_{N20,s} = \sum_{st=1}^{ST} ((Q_{N20,P,s,st} \times A_{s,st}) \times EF_{N20,D} \times 44/28) \times 10^{-3} \times GWP_{N20}$$

 $PE_{N2O,p}$ = Project emissions of N₂O during the period p (tCO₂e/period)

 $PE_{N2O,s}$ = Project emissions of N₂O in cropping season s (tCO₂e/season)

 $Q_{N2O,P,s,st}$ = Application rate of N-input in the project fields of stratum *st* during period *p* (kg N input/ha/period)

 $EF_{N20,D}$ = Emission factor for single and multiple drainage: 0.005 kg N₂O-N/kg N input.

 $A_{s,st}$ = Area of project fields of stratum *st* in cropping season *s* (ha)

 GWP_{N2O} = Global warming potential of N₂O (tCO₂e/tN₂O)

3. CO₂ missions

 CO_2 emissions due to drainage pumps are counted, while those from irrigation pumps are optional for counting.

Project CO₂ emissions are calculated as follows:

$$PE_{CO2,p} = \sum_{i=1}^{n} (EF_{fuel, i} \times Q_{F,i})$$

Where:

 $\begin{aligned} &PE_{CO2,p} = \text{Project emission of CO}_2 \text{ during the period } p \text{ (tCO}_2 e/\text{period)} \\ &Q_{F,i,p} = \text{Quantity of fuel of type } i \text{ during the period } p \text{ (quantified as energy input) (TJ /period)} \\ &EF_{fuel,i} = \text{Emission factor of fuel type } i \text{ based on IPCC guidelines (tCO}_2 e/\text{TJ}) \\ &CO_2 \text{emissions from other sources such as irrigation pumps are optional to measure.} \end{aligned}$

H. Calculation of emissions reductions

1) In Case When CH₄ Emissions are Calculated based on Direct Measurement

 $ER_p = (RE_p - PE_p) \times (1 - Ud_{DM})$

Where:

 ER_p = Emission reductions during period p (tCO₂e)

 RE_p = Reference emissions during period p (tCO₂e)

 PE_p = Project emissions during period p (tCO₂e)

 Ud_{DM} = Uncertainty deduction (fraction: 0.05 for measurement frequency of once within three years and 0.1 for measurement frequency of once per four to five years)

Ud_{DM} values for case 1)		
Measurement frequency of CH_4 Ud_{DM} values		
Once within3 years	0.05	
Once every 4 to 5 years	0.10	

* If accuracy of measurement improves, *Ud* values of less than or equal to 0.10 may be accepted subject to consideration by the Joint Committee.

2) In Case When CH₄ emissions are Calculated Using Country Specific Emission Factor Combined with Direct Measurements

 $ER_p = (RE_p - PE_p) \times (1 - Ud_{EF})$ Where:

 ER_p = Emission reductions during period p (tCO₂e)

 RE_p = Reference emissions during period p (tCO₂e)

 PE_p = Project emissions during period p (tCO₂e)

 Ud_{EF} = Uncertainty deduction (fraction: 0.15 for measurement frequency of once within five years)

Ud_{EF} value	f
U_{aff} value	tor case 21
CWLF Guide	101 0000 21

Measurement frequency of CH ₄	Ud_{EF} value
Once within 5 years	0.15

I. Data and parameters fixed ex ante

The source of each data and parameter fixed ex ante is listed as below

Parameter	Description of data	Source
EF _{N20,c}	Emission factor for continuous flooding: 0.003 kg N ₂ O -N/ kg N input	IPCC guidelines (2019)
EF _{N20,D}	Emission factor for single and multiple drainage: 0.005 kg N ₂ O -N/ kg N input	IPCC guidelines (2019)
<i>EF</i> _{fuel,i}	Emission factor of fuel type i (t CO ₂ e/TJ)	IPCC guidelines (2019)

EF _{CH4,,c,d}	Emission factor of CH4 per day co	ontinuously	Corton et al. (2000),
	flooded fields without organic amendments		Wassman et al. (2000)
	in cropping season s (kgCH ₄ /ha/day)		
	- For dry season: 1.46 (kg/ha/day) For wet		
	season: 2.95 (kg/ha/day)		
$SF_{\mathrm{R},w}$	Reference scaling factors to acco	ount for the	IPCC guidelines (2006)
	differences in water regime	during the	
	cultivation period: 1 for continuou	us flooding.	
SF_p	Scaling factors to account for the	differences	IPCC guidelines (2019)
	in water regime in the pre-season	n before the	
	cultivation period: 1.00 for non-f	looded pre-	
	season <180 d, 0.89 for non-fi	looded pre-	
	season >180 d, 2.41 for flooded	pre-season	
	(>30 d), and 0.59 for non-flooded	l pre-season	
	>365 d		
<i>CFOA</i> _i	Conversion factor for organic an	mendment i	IPCC guidelines (2019)
Ľ	(in terms of its relative effect wit	h respect to	
	straw applied shortly before cultiv	vation):	
	Organic amendment	CFOA	
	Straw incorporated shortly	1.00	
	(<30 days) before cultivation		
	Straw incorporated shortly	0.19	
	(>30 days) before cultivation		
	Compost	0.17	
	Farm yard manure	0.21	
	Green manure	0.45	
	*Straw application means that		
	incorporated into the soil. It does		
	cases where straws are just pla surface, and straws that were b		
	field.		
$SF_{P,w}$	Project scaling factors to account for the		IPCC guidelines (2019)
	differences in water regime during the		
	cultivation period: 0.55 for multiple drainage		
	cultivation period. 0.55 for multip	sie aramage	

Ud _{DM}	Uncertainty deduction (fraction: 0.05 for	Expert judgement
	measurement frequency of once within three	* If accuracy of
	years and 0.1 for measurement frequency of	measurement improves, Ud
	once per four to five years)	values of less than or equal
		to 0.10 may be accepted
		subject to consideration by
		the Joint Committee
Ud_{EF}	Uncertainty deduction (fraction: 0.15 for	Expert judgement
	measurement frequency of once within five	
	years)	

Appendix A: Guidelines for Measuring Methane and Nitrous Oxide Emissions From Rice Paddy Fields

Appendix B: Supplement for Water Management in Rice Paddy Fields

Appendix C: Supplement for Monitoring Methods

History of the document

Version	Date	Contents revised	