Appendix A: Guidelines for Measuring Methane and Nitrous Oxide Emissions from Rice Paddy Fields

This appendix explains how the methane (CH₄) and nitrous oxide (N₂O) emissions can be measured in rice paddy fields. It is necessary that the implementation of CH₄ and N₂O measurement by a closed chamber method involves a technician who has been approved by independent experts before the validation at third-party organizations and operators trained by the technician.

In order to get the certification, project participants should contact the Ministry of Agriculture, Forestry and Fisheries of Japan as a representative of the Expert Committee as follows: maff_JCMTML@maff.go.jp

The following tables are arranged sequentially from the chamber design to the calculation of the seasonal CH_4 and N_2O emissions. See also "<u>Guidelines for Measuring</u> <u>CH₄ and N₂O Emissions from Rice Paddies by a Manually Operated Closed Chamber</u> <u>Method</u>" (pdf file, 8.4 MB) for the scientific basis and better understanding of the following guidance through the visual presentation.

Feature	Conditions		
Material,	In general, chamber shapes and materials are inseparable		
color, and	factors. In addition, chamber shapes allowed are dependent on a		
shape	rice planting system (transplanting or direct seeding).		
	Cylinder-shaped chambers with round basal area are usually		
made of commercially available non-transparent plasti			
	containers. Painting those with whitish color, if not inherent, or a		
	cover with reflective material is recommended to prevent the		
	increase in the inside temperature. Cylinder-shaped chambers		
	can be used only for the direct seeding system.		
	Rectangular-shaped chambers with square basal area are made		
	of transparent acrylic plates (with stainless steel frames for the		
	reinforcement, if necessary). Rectangular-shaped chambers can		

Table A-1. Chamber design

	be used for both transplanting and the direct seeding system.			
	The total chamber height (including that of a chamber base) is			
	recommended to be higher than the rice plant height. Double- or			
	triple-deck style is available to the rectangular-shaped chambers which are adjustable depending on the growing plant height.			
	which are adjustable depending on the growing plant height.			
	The constant placement of chambers equipped with upper lids			
	that can be opened and closed is not recommended.			
Base	The chamber base needs to be installed at least one day before			
material	the first gas sampling and must remain in the field throughout the			
and shape	season. Base materials and shapes depend on the chamber			
	shapes. The aboveground height of the bases is recommended			
	to be no longer than 30 cm.			
	For cylinder-shaped chambers, a round-shaped base with a			
	water sealing is usually made of plastic materials. A cylinder-			
	shaped base in the soil requires holes on the sidewall to allow			
	water exchange between inside and outside the chamber area.			
	For rectangular-shaped chambers, 4 corner pillars, made of PVC			
	pipes or metal rods, stuck into the plow pan are sufficient when			
	there is surface water. Top of the pillars are required to be			
	underwater for sealing. When there is no or shallow surface			
	water, chambers can be gently placed on the soil. CH ₄ ebullition			
	may happen after the placement, and it should be escaped from			
	or well mixed in the chamber headspace before the first gas			
	sampling. Square-shaped bases with water sealings made of			
	plastic materials are also available temporarily or constantly			
	during the season.			
Basal area	The total area covered by chambers in one field is required to be			
	wider than 0.25 m ² . To accommodate this area, multiple (n \ge 2)			
	chambers are used in one field. The minimum distance between			

	each chamber should be 1 m. For the transplanting system, the	
	basal area size of a rectangular-shaped chamber should be a	
	multiple of rice plant density to appropriately capture GHG	
	emissions (diffusion) from the soil or the surface water. For	
	example, if the plant density is 30 cm $ imes$ 15 cm, the basal area	
	should be 30 cm \times 30 cm (covering 2 rice hills), 30 cm \times 60 cm	
	(4 hills), or etc.	
Accessory	A chamber needs to be equipped with a gas sampling port, an	
	inside fan, an inside thermometer, and an air vent. The port may	
	also serve as the vent. The port should be apart from the	
	chamber wall by using a tube connected to a stopcock. The dead	
	volume in the tube should be replaced before the gas sampling.	
	A heavy battery for the fan operation should not be placed on the	
	A heavy battery for the fan operation should not be placed on the upper lid.	

Table A-2. Gas sampling

Feature	Conditions		
Chamber	A scaffold needs to be installed at least one day before the first		
area	gas sampling to reach the chamber areas without disturbing the		
	soil. The chamber area needs to be apart 1.5 m from the ridge of		
	the field.		
Chamber	At least 2 chambers, depending on the basal area size (see the		
replication	basal area feature in Table A-1).		
per field			
Number of	At least 3 samples during the chamber closure time (30-40 min).		
gas	The first gas sample should be collected after ≥1 min after the		
samples	chamber placement to wait for the headspace gas to become		
per	well-mixed.		
chamber			

placement				
Gas	Morning, especially in the early hours (e.g., 7 am-10 am). If the			
sampling	sampling time must be extended to daytime, the schedule should			
time of	be designed to prevent the systematic spatial bias since CH ₄			
day	emissions are emitted more in daytime.			
Frequency	At least once per week. To better trace the possible temporary			
	CH ₄ emission peak during a drainage event and the possible			
	temporary N ₂ O emission peak after nitrogen fertilizer			
	topdressing, additional measurements once or twice are			
	recommended during these events.			
Gas	The gas sampled from the port should be stored into a glass or			
storage	plastic evacuated vial (with a rubber stopper), a plastic or			
	aluminum bag, or a plastic syringe. A gas leak test for the			
	expected storage duration needs to be implemented before the			
	start of the season and the gas concentration analyzed needs to			
	be corrected appropriately, if applicable.			
Manual	Uniform and gentle manual operation needs to be implemented			
operation	regardless of time and place. Several operators should			
	simultaneously implement the measurement in the reference			
	fields and project fields. After one measurement, the air inside			
	the chamber should be replaced.			
	It is necessary to submit a film that records a series of gas			
	sampling operations by operators trained by the technician to the			
	independent experts to approve their skill before the validation. If			
	the operator's skill is insufficient, further training and			
	resubmission of the film are required.			

Table A-3. Laboratory gas analysis

Feature	Conditions
---------	------------

Method	A CH ₄ concentration needs to be analyzed by a gas chromatograph (GC) equipped with a flame ionization detector (FID) or a laser spectroscope. A N ₂ O concentration needs to be analyzed by a gas chromatograph (GC) equipped with an electron capture detector (ECD) or a laser spectroscope. In case of using a laser spectroscope, project participants should follow the manufacture's instruction for the gas analysis.
GC system	The GC system consists of a gas injection port, a separation column, a gas detector, a data processor, etc. Carrier gas and the standard gas are essential for the steady operation and the analysis.
	The ECD-GC should be equipped with a multi-port valve to remove oxygen and water vapor for the refined detection of N ₂ O. It is necessary to submit the column diagram and photos of GC appearance with and without opening the oven door to the independent experts before the validation
Calibration line or curve	The certified standard gases need to be used to draw a calibration line or curve. 2-point calibration is sufficient for FID-GC using the CH ₄ standard gas with the atmospheric ambient concentration (e.g., ~2 ppm) and a higher concentration (e.g., 50-100 ppm). 2- or 3-point calibration is sufficient for ECD-GC using the N ₂ O standard gas with the atmospheric ambient concentration (e.g., ~0.3 ppm) and higher concentrations (e.g., 2-10 ppm). Note that the linearity is not always secured for ECD-GC to detect the higher concentration of N ₂ O. A calibration line or curve needs to be drawn each day before and after the analyses.
Quality control	The repeatability of the GC analysis needs to be tested before the start of the season using the certified standard gases. The

coefficient variation (CV) of 10-20 repeated analyses of the
same standard gas should be \leq 5% for all the used standard
gases (i.e., ambient and higher concentrations). It is necessary
to submit the results of the repeatability test to the independent
experts for approval of quality control before the validation.
If the results are poor (i.e., CV > 5%), the result of additional
blind test is recommended to submit.

Table A-4. Calculation of the seasonal total emission of CH_4 or N_2O and emission factors

Order	Procedure			
1	Calculate the mass of CH ₄ or N ₂ O in the analyzed gas sample:			
		$m_t = c_t \times V \times M \times \frac{1atm}{R \times T_t \times 1000}$		
	Where	Where:		
	m_t	=	Mass of CH ₄ or N ₂ O in chamber at time <i>t</i> (mg)	
	t	=	Time point of gas sampling (e.g. 1, 16, and 31 min	
			after chamber placement in case of 3 samples for	
			30 min)	
	c _t	=	CH ₄ or N ₂ O concentration in chamber at time t (ppm)	
	V	=	Chamber volume (L)	
	М	=	Molar mass of CH ₄ (16.042 g mol ⁻¹) or N ₂ O	
			(44.0128 g mol ⁻¹)	
	1atm	=	Assume constant pressure of 1 atm, unless the	
			inside pressure is recorded	
	R	=	Universal gas constant: 0.08206 L atm K ⁻¹ mol ⁻¹	
	T_t	=	Temperature at time t (K)	
2	Determine the slope of the line of best fit for the values of over time:			
		$s = \frac{\Delta r}{\Delta s}$	$\frac{n}{t}$	
	Where:			
	S	=	Slope of line of best fit (mg min ⁻¹)	

3	Calculate the hourly flux for one chamber measurement:		
	$F_{ch} = s \times \frac{60min}{A}$		
	Where:		
	F_{ch} = Flux of chamber ch (mg m ⁻² h ⁻¹)		
	<i>ch</i> = Index for replicated chamber in a field		
	A = Chamber basal area (m ²)		
4	Calculate the average hourly flux in a field:		
	$F = \frac{\sum_{ch=1}^{n} F_{ch}}{n}$		
	ⁿ Where:		
	F = Average flux of a field (mg m ⁻² h ⁻¹)		
	n = Number of replicated chambers in a field		
5	Calculate the total emission in one measurement interval:		
	$E_i = \frac{(F_i + F_{i+1}) \times 24h \times D_i}{2}$		
	Where:		
	E_i = Total emission in interval <i>i</i> (mg m ⁻²)		
	<i>i</i> = Index for measurement interval in a season		
	F_i = Hourly flux at the start of interval <i>i</i> (mg m ⁻² h ⁻¹)		
	F_{i+1} = Hourly flux at the end of interval <i>i</i> (mg m ⁻² h ⁻¹)		
	D_i = Number of days in interval <i>i</i> (d)		
	Note that flux on planting day and flux on harvest day can be		
	assumed to be zero if measurement is not implemented on those		
	days.		
6	Calculate the seasonal total emission in a field:		
	$E = \sum_{i=1}^{N} E_i$		
	Where:		
	E = Total emission in a season (mg m ⁻²)		
	<i>N</i> = Number of measurement intervals in a season		
7	Calculate the emission factor for the gas in stratum st in season s		
	$EF_{s,st} = \frac{\sum_{f=1}^{F} E_f \times 10^{-2}}{F}$		

Where: Emission factor of the gas in stratum st in season s (kg $EF_{s,st}$ = ha⁻¹ season⁻¹) Total emissions of the gas in field f of stratum st in season E_f = $s (mg m^{-2} season^{-1})$ F Number of (representative) fields of stratum st in season = S Calculate the emission factor for the gas per day in stratum st in 8 season s $EF_{s,d,st} = \frac{\sum_{f=1}^{F} \left(\frac{E_f \times 10^{-2\gamma}}{D_f}\right)}{F}$ Where: Emission factor of the gas per day in stratum st in season $EF_{s.d.st} =$ s (kg ha⁻¹ day⁻¹) = Total emissions of the gas in field *f* of stratum *st* in season E_f s (mg m⁻² season⁻¹) Total number of days in field f of stratum st in season s D_f = (days season⁻¹) F Number of (representative) fields of stratum st in season = S