Appendix C: Supplemental Guidance for Monitoring Methods and GHG Emission Calculations

This appendix provides additional explanations for the monitoring parameters and methods used in this methodology. Project participants have a certain degree of freedom to select the monitoring methods depending on the situation. This appendix also explains the procedures how to calculate CH_4 and N_2O emissions in specific cases regarding the success of water management. This methodology makes much of the results.

1. Selection of representative fields in each stratum

The 3 representative fields in terms of environmental and agronomic settings need to be prepared for both project and reference areas in every stratum. This is to avoid over- or under-estimation of the calculated CH_4 emission reduction. A pair of project and reference fields should be provided from one farmer to avoid the effect of historical difference in agronomic practice on the CH_4 emission and rice yield. Each of the 3 paired fields should have the same agronomic history for \geq 5 year.

2. Significant rice yield reduction

Rice yield sampling is implemented at the total of 6 representative fields in each stratum to confirm that there is no rice yield reduction by the project. For the direct seeding system, $1 \text{ m} \times 2 \text{ m}$ area should be selected from each field whereas a rectangle area with 50 rice hills for the transplanting system. Unhulled rice grain yield with the same moisture content needs to be measured. A sampling area with normal rice growth should be visibly selected at harvest.

The 95% confidence interval (CI) of the yield in 3 fields needs to be calculated for both project and reference areas. If the intervals do not overlap each other, it is considered that there is significant change in rice yield.

The lower and upper limits of 95% CI is calculated using the CONFIDENCE.T function in Excel as follows:

Lower limit = $Y_m - CONFIDENCE.T(0.05, STDEV.S(Y_1, Y_2, Y_3), 3)$

Upper limit = Y_m + CONFIDENCE. T(0.05, STDEV. S(Y_1, Y_2, Y_3), 3)

Where:

 Y_m , Y_1 , Y_2 , and Y_3 are the mean rice yield of the 3 fields, rice yield at the first field, rice yield at the second field, and rice yield at the third field, respectively.

3. Water level monitoring

It is necessary to submit photos of monitored water level with location and time information as well as a logbook for the water level and/or the number of drained days. In specific cases listed in Table C-1, daily rainfall data recorded using an on-site weather station or at the nearest metrological station also need to be provided to ensure that the water level during non-monitoring days is within the allowed range. Remote sensing can be an option to monitor water existence (>0 cm) and non-existence (≤ 0 cm) when project participants demonstrate its accuracy and reliability enough to be applied to independent experts described in Appendix A in advance. In addition to remote sensing, other improved methods to monitor water level could be considered to be applied when the independent experts approve those by reviewing the submitted base data in advance.

There are several required timings of taking photos: (1) when the water level reaches -15 cm, (2) when the water level maintains ≤ 0 cm for a total of 10 days consisting of at least 3 consecutive days (e.g., 3 d + 3 d + 4 d and 4 d + 6 d) in case of using the number of drained days as the index, (3) when the water level reaches ≤ 0 cm for the first time, and (4) at least 3-day interval while the water level maintains ≤ 0 cm.

There are 4 cases of water level change to decide which timing photos should be taken (Table C-1). In every scenario, it is strongly recommended to take photos of the water level on the first day when the water level reaches under the soil surface to secure flexibility in case the water level does not reach -15 cm, These "first day photos" must be taken in Case II and III.

*SFw of single drainage is applied in Case II and III even if these cases are achieved more than one time. However, SFw of multiple drainage can be applied in Case II or III subject to combination of Case I.

*Logbook must be recorded appropriately in all the cases to support the data.

*The examples in Table C-1 are representatives and do not cover all the cases.

Case	Sce	enario, conditi	on, a	nd requ	uired p	hotos		
	Exp	bected water l	evel:	-15 cn	n. '			
	Res	sult: water lev	el -1	5 cm a	chieve	d.		
	Арр	olicable only i	n cas	e that	the wa	ter leve	el previ	ously reached -15 cm in the
	san	ne rice seaso	n at th	ne sam	ie area			
	\succ	Photos take	n whe	en the v	water le	evel rea	aches -	-15 cm.
		Day	Any	date				
		Water	<0	<0	<0	<0	-15	

Table C-1. Four cases of taking photos

		Level												
		Photo)	(X)				2	Х					
II	Exp	ected v	water	level:	−15 cr	n.								
	Res	ult: wa	ter le	vel -1	5 cm n	ot achi	eved							
	Арр	licable	only	in cas	e that	the wa	ter le	vel	prev	iously	reache	ed -15	5 cm i	n the
	sam	ne rice	sease	on at t	he san	ne area	l .							
	\triangleright	Princi	ole:											
		Photo	s take	en whe	en the v	water le	evel re	eac	hes ≤	≤0 cm f	or the t	first tir	ne. Pl	notos
		taken	at lea	ast on	ce eve	ry 3 da	ays w	hile	the	water	level n	nainta	ins ≤() cm.
		The w	ater I	evel n	eeds to	o maint	ain ≤() cn	n for	the tota	al of 10) days	cons	isting
		of at le	east 3	3 cons	ecutive	e days.								
	Exa	mple						_						_
	Da	ay	1	2	3	4	5	6		7	8	9	10	
	W	ater	<0	<0	<0	<0	<0	<	:0	<0	<0	<0	<0	
	Le	vel												
	Ph	oto	Х			Х				Х			Х	
	\triangleright	Altern	atives	S:										
		Photo	s tak	en wh	en the	water	level	rea	aches	s ≤0 cr	n for t	he firs	t time	e and
		taken	to pr	ove th	at the	water	level	rem	nains	below	the s	oil sur	face	when
		the to	tal of	10 d	ays ha	ve pas	sed	sinc	ce th	e first	day of	the v	water	level
		reachi	ng ≤() cm.	The wa	ater lev	el ne	eds	s to n	naintai	n ≤0 ci 	m for	the to	tal of
		10 day	ys co	nsistir	ng of a	t least	3 cor	nse	cutiv	e days	. The o	days i	n bet	ween
		two pł	notos 	are d	eemed	the w	ater l	eve	l rem	naining	below	the s	oll su	rface
· · ·		conse	CUTIV	ely, as	long a	is the r	ainta	II da	ata ir	ndicate	s no ra	aintali	durin	g the
	Г.v.a		l.											
				2.0			1	0						
		iy otor		2-9				0						
			<0	<0			<							
	Dh		Y	No r	ainfall	(provo	A V							
		1010	~	by da	ita)	(piove								
	Exa	mple B	3											
	Da	IV	1		2-5			6		7	8	9*	10*	11
	W:	ater	<0		_ <u>-</u> <0			<0)	>0	<0	<0	<0	<0
	Le	vel								-				
	Ph	oto	X		No	rai	nfall	Х	F	Rainfal	I X			Х
			1				-							

		1										
				(proved by	y dat	a)						
	*The wate	r lev	el can	be deeme	ed be	low	the so	oil surfa	ce for	day 9	and '	10 as
	these days	s are	betwe	en day 8 a	and d	ay 1′	I whe	re photo	os are	taken	once	every
	3 days to i	ndica	ate the	water leve	el <0	(see	the P	rinciple	of Ca	se II).		
	Example C)				T						
	Day	1	2-5*		6	7	8	9	10	11	12	
	Water	<0	<0		>0	>0	<0	<0	<0	<0	<0	
	Level											
	Photo	Х	No	rainfall	Rai	nfall	X			Х	Х	
			(prov	ed by								
			data)									
	*When the	ere is	appro	priate raint	all da	ata a	s well	as logb	ook re	ecords,	this p	eriod
	(day2-5) c	an be	e deen	ned the wa	ater le	evel k	below	the soil	surfa	ce. A p	hoto o	of the
	first day of	f the	water	level reacl	ning	oelov	v the s	soil sur	face a	gain (c	lay 8)	must
	be taken fo	or the	e recor	d of the fo	llowii	ng da	iys.					
111	Expected	wate	r level:	below the	soil	surfa	ice bu	t above	e −15 c	cm.		
	Result: wa	ter le	evel -1	5 cm not a	achie	ved.						
	Applicable	also	in cas	se that the	prev	ious	water	level da	ata are	e not a	vailab	le.
	> Princi	ple:										
	Photo	s tak	en wh	en the wat	er lev	el re	aches	i ≤0 cm	for the	e first ti	me. P	hotos
	then ta	aken	at leas	st once eve	ery 3	days	while	the wa	ter lev	el rema	ains ≤	0 cm.
	These	e pho	tos pr	ove that th	e wa	ter le	vel re	mains	≤0 cm	for the	e total	of 10
	days o	consi	isting o	of at least 3	3 con	secu	tive d	ays.				
	Example											
	Day	1	2	3 4	Į	5	6	7	8	9	10	
	Water	<0	<0	<0 <0) .	<0	<0	<0	<0	<0	<0	
	Level											
	Photo	Х		X				Х			Х	
	> Altern	ative	s:									_
	Photo	s tak	ken wh	en the wa	iter le	evel i	reach	es ≤0 c	m for	the fire	st time	and
	taken	to p	rove th	nat the wa	ter le	vel r	emair	is belov	w the s	soil su	rface	when
	total o	of 10	days h	ave passe	d sin	ce th	e first	day of	the wa	ater lev	el rea	ching
	≤0 cm	ı. Th	e wate	er level nee	eds t	o ma	intain	≤0 cm	for the	e total	of 10	days
	consis	sting	of at le	east 3 cons	secut	ive d	ays. T	he day	s in be	tween	two p	hotos
	are o	deem	ned th	ne water	leve	el re	emaini	ng be	low t	he so	oil su	rface
	conse	cutiv	ely, as	s long as t	he ra	infall	data	indicate	es no	rainfall	durin	g the

	perio	d.												
	Example /	4												
	Day	1	2-9				10							
	Water	<0	<0				<0							
	Level													
	Photo	Х	No ra	ainfall	(prov	ved	Х							
			by da	ita)										
	Example F	3												
	Day	1		2-5				6	7		8	9	10	11
	Water	<0		<0				<0	0>		<0	<0	<0	<0
	Level													
	Photo	Х		No	r	rain	fall	X	Rain	fall	X			Х
				(prove	d by	data	a)							
	*The wate	er leve	el can	be dee	emed	l be	low t	he so	oil surf	ace	for c	lay 9	and	10 as
	these day	s are l	betwee	en day	8 an	d da	ay 11	whe	re pho	tos	are ta	aken	once	every
	3 days to	indica	te the	water I	evel	<0	(see	the P	rincipl	e of	Cas	e III).		
	Example (2												
	Day	1	2-5*			6	7	8	9	1	0	11	12	
	Water	<0	<0			>0	>0	<0	<0	<	0	<0	<0	
	Level													
	Photo	X	No rai	infall		Ra	ainfall	X				Х	Х	
			(prov	/ed	by									
			data)											
	*When the	ere is a	approp	oriate ra	ainfal	ll da	ata as	s well	as log	boo	k rec	ords,	this p	period
	(day 2-5) (can be	e deen	ned the	wate	er le	evel b	below	the so	oil si	urfac	e. A p	photo	of the
	first day o	f the v	water I	evel re	achir	ng t	below	/ the s	soil su	rfac	e ag	ain (c	lay 8)	must
	be taken f	or the	recor	d of the	e follo	owir	ng da	ys.						
IV	Expected	water	level:	below	the s	soil :	surfa	ce bu	t abov	'e -	15 cn	n.		
	Result: wa	ater le	vel -15	5cm ac	hieve	ed.								
	Applicable	also	in cas	e that t	he p	revi	ous v	water	level	data	are	not a	vailab	le.
	Photo	os take	en whe	en the v	vatei	r le\	/el re	ache	s -15 	cm.				
	Day		Any	date				T						
	Wate	۶r	<0	<0	<0		<0	-15						
	Leve					_								
	Photo	D	(X)					Х						

4. Calculation of CH₄ emission reduction by the direct measurement

Calculation methods for CH₄ emission reduction by the direct measurement differ year by year. In the years when the direct measurement is implemented, the measured EF_{CH4,R,s,d,st} or EF_{CH4,P,s,d,st} need to be used for the calculation. On the other hand, in the years when the direct measurement is not implemented, the mean EF_{CH4,R,s,d,st} or $EF_{CH4,P,s,d,st}$ of the previous \geq 3-year measurements need to be used. The minimum frequency of the direct measurement is once per 5 years after the 3-year initial measurements to derive the initial EF_{CH4,R,s,d,st} or EF_{CH4,P,s,d,st}. The examples 1 and 2 of Table C-2 show 3-year interval measurement. More frequent measurements are available as shown in the example 3 (once per 2 years) or every year. If the initial measured EF_{CH4,R,s,d,st} or EF_{CH4,P,s,d,st} are not reasonable for project participants due to abnormal weather conditions and/or poor water management, additional measurement is possible to derive the initial EF_{CH4,R,s,d,st} or EF_{CH4,P,s,d,st} as shown in the example 4. After the initial measurements, if the measured EF_{CH4,R,s,d,st} or EF_{CH4,P,s,d,st} are out of the 95% confidence interval of the previous measured means, EFCH4,R,s,d,st or EFCH4,P,s,d,st need to be recalculated by adding the newly measured means as shown in the examples 2 and 3. The examples of the schedule for the direct measurement of 5-year and 4-year intervals are shown in Table C-3.

Year	Example 1	Example 2	Example 3	Example 4
Before	Meas	No meas	No meas	Meas
Y1	Meas	Meas	Meas	Meas
Y2	Meas	Meas	Meas	Meas (bad weather)
Y3	Calc (B12)	Meas	Meas	Additional meas
Y4	Calc (B12)	Calc (123)	Calc (123)	Calc (B13)
Y5	Meas (in)	Calc (123)	Meas (in)	Calc (B13)
Y6	Calc (B12)	Meas (out)	Calc (123)	Meas (in)
Y7	Calc (B12)	Calc (1236)	Meas (out)	Calc (B13)
Y8	Meas (in)	Calc (1236)	Calc (1237)	Calc (B13)
Y9	Calc (B12)	Meas (out)	Meas (in)	Meas (in)
Y10	Calc (B12)	Calc (12369)	Calc (1237)	Calc (B13)

Table C-2. Examples of schedule for the direct measurement at 3-year interval

* B: Before, Meas: Measurement, No meas: No measurement, Calc: Calculation.

*The figures in the parentheses indicate years used to calculate the mean $EF_{CH4,R,s,d,st}$ or $EF_{CH4,P,s,d,st}$ (ex: Calc (B13): Calculate the mean $EF_{CH4,R,s,d,st}$ or $EF_{CH4,P,s,d,st}$ using the data from the year "B"efore the project, the "1"st year, and the "3"rd year).

*Meas (in/out): This indicates whether the result of the measurements is within or out the 95% confidence interval of the previous measured mean.

Year	Example 5	Example 6	Example 7	Example 8
	(5-year)	(5-year)	(5-year)	(4-year)
Before	Meas	No meas	Meas	No meas
Y1	Meas	Meas	Meas	Meas
Y2	Meas	Meas	Meas (bad weather)	Meas
Y3	Calc (B12)	Meas	Additional meas	Meas
Y4	Calc (B12)	Calc (123)	Calc (B13)	Calc (123)
Y5	Calc (B12)	Calc (123)	Calc (B13)	Calc (123)
Y6	Calc (B12)	Calc (123)	Calc (B13)	Calc (123)
Y7	Meas (in)	Calc (123)	Calc (B13)	Meas (out)
Y8	Calc (B12)	Meas (out)	Meas (in)	Calc (1237)
Y9	Calc (B12)	Calc (1238)	Calc (B13)	Calc (1237)
Y10	Calc (B12)	Calc (1238)	Calc (B13)	Calc (1237)

Table C-3. Examples of schedule for the direct measurement at 5-year and 4-year intervals.

In parentheses, the year numbers used to calculate the mean $EF_{CH4,R,s,d,st}$ or $EF_{CH4,P,s,d,st}$.

5. Calculation of CH₄ emission reduction by the IPCC factors

Calculation of CH₄ emission reduction by the IPCC's tier-1 and tier-2 factors requires the direct measurement at least once per 5 years to confirm its appropriateness. The year starting the direct measurement can be chosen from that before the project (before) or the first year (Y1) as shown in the examples I and II of Table C-4. However, the project area needs to be fixed before starting the project when using the example I. The conservative $EF_{CH4,R,s,d,st}$ and SF_w should be derived and used to calculate the CH₄ emission reduction as shown in Table C-5. If the measured $EF_{CH4,R,s,d,st}$ and/or SF_w are too conservative and not reasonable for project participants due to abnormal weather condition and/or abnormal agronomic practices, additional measurement is possible as shown in the examples III and IV of Table C-4.

Table C-4. Examples of schedule for the direct measurement for the calculation using the IPCC's tier-1 and tier-2 factors.

Year	Example I	Example II	Example III	Example IV
Before	Meas			

Y1		Meas	Meas	Meas
Y2			Additional meas	
Y3				
Y4				
Y5	Meas			
Y6		Meas	Meas	Meas
Y7				Additional meas
Y8				
Y9				
Y10				

Table C-5. Procedures to decide the $EF_{CH4,R,s,d,st}$ and SF_w used for the calculation.

Order	Procedure
1	Calculate the 95% confidence interval (CI) of both the measured $EF_{CH4,R,s,d,st}$
	and SF _w *.
2	Compare the 95% CI of the measured $EF_{CH4,R,s,d,st}$ and SF_w with the 95% CI of
	the tier-2 $EF_{CH4,c,s,d}$ ** and tier-1 SF_w ***, respectively.
3-1	If the 95% CI of the measured $EF_{CH4,R,s,d,st}$ and the 95% CI of tier-2 $EF_{CH4,c,s,d}$
	overlap, the tier-2 EF _{CH4,c,s,d} needs to be used.
3-2	If the 95% CI of the measured $EF_{CH4,R,s,d,st}$ and the 95% CI of tier-2 $EF_{CH4,c,s,d}$
	do not overlap and the measured $EF_{CH4,R,s,d,st}$ exceeds the interval, the tier-2
	EF _{CH4,c,s,d} needs to be used.
3-3	If the 95% CI of the measured $EF_{CH4,R,s,d,st}$ and the 95% CI of tier-2 $EF_{CH4,c,s,d}$
	do not overlap and the measured $EF_{CH4,R,s,d,st}$ falls short of the interval, the
	measured EF _{CH4,R,s,d,st} needs to be used.
4-1	If the 95% CI of the measured SF_w and the 95% CI of SF_w overlap, the tier-1
	SF _w needs to be used.
4-2	If the 95% CI of the measured SF $_{\rm w}$ and the 95% CI of SF $_{\rm w}$ do not overlap and
	the measured SF_w falls short of the interval, the tier-1 SF needs to be used.
4-3	If the 95% CI of the measured SF _w and the 95% CI of SF _w do not overlap and
	the measured SF_w exceeds the interval, the measured SF_w needs to be used.

* SF_w is calculated as follows:

$$SF_w = \frac{SF_{w1} + SF_{w2} + SF_{w3}}{3}$$

Where:

 SF_{w1} = The ratio of CH₄ emission from the first paired project field to CH₄

emission from the first paired reference field.

 SF_{w2} = The ratio of CH₄ emission from the second paired project field to CH₄ emission from the second paired reference field.

$$SF_{w3}$$
 = The ratio of CH₄ emission from the third paired project field to CH₄ emission from the third paired reference field.

The lower and upper limits of 95% CI of SF_w is calculated using the CONFIDENCE.T function in Excel as follows:

Lower limit = $SF_w - CONFIDENCE.T(0.05, STDEV.S(SF_{w1}, SF_{w2}, SF_{w3}), 3)$

Upper limit = SF_w + CONFIDENCE.T(0.05, STDEV.S(SF_{w1} , SF_{w2} , SF_{w3}), 3)

The same procedure applies to the calculation of 95% CI of EF.

** The original error range provided to tier-2 EF is that between the minimum and maximum values among the seasonal data used to derive the mean [Tracking <u>Greenhouse Gases: An Inventory Manual, 2011</u> (pdf file, 3.6 MB)]. This methodology therefore recalculated the 95% CI of tier-2 EF with referring its source articles (<u>Corton et al., 2000</u>; <u>Wassmann et al., 2000</u>) as follows:

EF for dry season rice: 1.46 (95% CI, 1.08–1.84) (kg ha⁻¹ d⁻¹)

EF for wet season rice: 2.95 (95% CI, 1.97-3.92) (kg ha⁻¹ d⁻¹)

Project participants need to use these intervals to decide the EF used for the calculation of CH₄ emission reduction by the IPCC's factors.

*** IPCC's tier-1 SF_w and its 95% CI are as follows:

 SF_w for multiple drainage: 0.55 (95% CI, 0.41–0.72)

SF_w for single drainage: 0.71 (95% CI, 0.53–0.94)

6. Spatial heterogeneity of water management

It is unrealistic to uniformly implement water management across all the project fields, due to factors other than stratification parameters such as different elevation, different soil permeability, and different water availability. This may cause the spatial heterogeneity of the success of water management. For example, it could happen that multiple drainage events are achieved in the representative project fields in which the direct measurement is implemented, whereas only one drainage event is achieved in other many project fields, and vice versa.

Because the former causes the overestimation of CH₄ emission reduction, it is necessary to calculate it in a conservative manner. In the case of the direct measurement, the CH₄ emission reduction by single drainage should be estimated by multiplying the measured CH₄ emission reduction by the conversion ratio derived from IPCC's SF_w

[(1-0.71)/(1-0.55) = 0.29/0.45]. On the other hand, for the latter case, the measured CH₄ emission reduction by single drainage needs to be applied to all the project fields.

In the case of the calculation using the IPCC's factors, SF_w suitable to the actual situation (i.e., 0.55 or 0.71) should be used combinationally.

7. Unexpected change from multiple drainage to single drainage

It is difficult to accurately predict the success of water management before starting the season. For example, no or only one drainage event can be achieved due to intermittent rainfalls throughout the season even in case when farmers originally aimed for multiple drainage events. There are two unexpected changes in the planned drainage practice. One is the change from the planned multiple drainage to the resultant single drainage (M to S), and another is the opposite change that from the planned single to the resultant multiple (S to M). Project participants need to decide suitable SF_w following the procedures described in Table B-1.

Case	Procedure
M to S with the	The measured SF_w is used in that year/season. Additional
direct	measurement is possible to derive suitable calculated SF_w of
measurement	multiple drainage as shown in Tables C-2 and C-3.
M to S without the direct measurement	The calculated or teir-1 SF_w of multiple drainage needs to be corrected by multiplying by 0.29/0.45.
S to M with the	The measured SF_w is used in that year/season. However, this SF_w
S to M with the direct	The measured SF _w is used in that year/season. However, this SF _w cannot be directly used to derive the calculated SF _w of single
S to M with the direct measurement	The measured SF _w is used in that year/season. However, this SF _w cannot be directly used to derive the calculated SF _w of single drainage. Instead, the measured SF _w needs to be corrected by
S to M with the direct measurement	The measured SF _w is used in that year/season. However, this SF _w cannot be directly used to derive the calculated SF _w of single drainage. Instead, the measured SF _w needs to be corrected by multiplying by 0.29/0.45 for this purpose.
S to M with the direct measurement S to M without	The measured SF _w is used in that year/season. However, this SF _w cannot be directly used to derive the calculated SF _w of single drainage. Instead, the measured SF _w needs to be corrected by multiplying by 0.29/0.45 for this purpose. The calculated or teir-1 SF _w of single drainage needs to be used in
S to M with the direct measurement S to M without the direct	The measured SF _w is used in that year/season. However, this SF _w cannot be directly used to derive the calculated SF _w of single drainage. Instead, the measured SF _w needs to be corrected by multiplying by 0.29/0.45 for this purpose. The calculated or teir-1 SF _w of single drainage needs to be used in a conservative manner.
S to M with the direct measurement S to M without the direct measurement	The measured SF _w is used in that year/season. However, this SF _w cannot be directly used to derive the calculated SF _w of single drainage. Instead, the measured SF _w needs to be corrected by multiplying by 0.29/0.45 for this purpose. The calculated or teir-1 SF _w of single drainage needs to be used in a conservative manner.

Table B-1. Four cases to decide SF_w used for the calculation.

8. N₂O emission factor not affected by the success of water management

The description in the above sections 6 and 7 is not applied to the calculation of N_2O emission. This is because the current IPCC's N_2O emission factor (EF_{1FR}) does not distinguish between single drainage and multiple drainage. That is, the same EF_{1FR} is

used without regard to the number of drainage events achieved (i.e., one or more). This is true for the direct measurement. The measured $EF_{N2O,R,s,st}$ is used in that year/season and the calculated $EF_{N2O,R,s,st}$ is derived from the previous \geq 3-year measurements without regard to the number of drainage events achieved. It is possible but not necessary to implement additional measurement for deriving suitable $EF_{N2O,R,s,st}$.