
This is not an ADB material. The views expressed in this document are the views of the author/s and/or their organizations and do not necessarily reflect the views or policies of the Asian Development Bank, or its Board of Governors, or the governments they represent. ADB does not guarantee the accuracy and/or completeness of the material's contents, and accepts no responsibility for any direct or indirect consequence of their use or reliance, whether wholly or partially. Please feel free to contact the authors directly should you have queries.

Bringing the Value of Nature into Economics, Finance, and Policy

Stephen Polasky University of Minnesota Natural Capital Project March 19, 2024

The sustainable development challenge

• "The central challenge of the 21st century is to develop economic, social, and governance systems capable of ending poverty and achieving sustainable levels of population and consumption while securing the life-support systems underpinning current and future human well-being"

Guerry, Polasky, Lubchenco, et al. 2015. Natural capital and ecosystem services informing decisions: From promise to practice *Proceedings of the National Academy of Sciences* 112: 7348-7355

The sustainable development challenge

- Sustainable development challenge
 - Economic development
 - AND
 - Environmental sustainability

• Record of the recent past:

- Rapid economic growth, but poverty remains prevalent
- Large declines in natural capital: climate and biodiversity crises

Some basics

- Nature provide a wide array of benefits (and costs) to people: "ecosystem services" or "nature's contributions to people" or "environmental services"
- Natural capital (ecosystems, biodiversity, natural resources): stocks/assets that generate the flow of ecosystem services
- Human actions affect natural capital and the ecosystem services they provide
- The benefits provided by nature often are not factored into important decisions that affect ecosystems
- Distortions in decision-making damage the provision of these benefits making human society and the environment poorer

ipbes

IPBES Global Assessment

www.ipbes.net

Food and Agriculture Organization of the United Nations

Downward trend in the majority of nature's contributions to people over the past 50 years

NATURE'S CONTRIBUTION TO PEOPLE		POTENTIAL CONTRIBUTION	REALIZED CONTRIBUTION	ENVIRONMENTAL CONDITION	IMPACT ON PEOPLE						
	Habitat	Habitat to support desired species									
REGULATING	Pollination & seed dispersal	Pollinator diversity & abundance	Pollinator - plant overlap	Pollinated plant diversity & abundance	A Health from pollinated foods						
	Air quality regulation	Amount of burnable biomass or pollution entraining vegetation	Burned vegetation & actual pollution entrainment	Air quality	Air pollution-driven mortality						
	Climate regulation	Potential GHG sequestration by existing ecosystems	Actual GHG sequestration, including land management	GHG concentration	Climate-driven mortality & costs						
	Ocean acidification regulation	Potential CO ₂ sequestration by existing ecosystems	Actual CO ₂ sequestration by existing ecosystems		Nutrition & income from shellfish & coral reefs						
	Water quantity & flow regulation	Potential water modulation by existing ecosystems	Actual water modulation by existing ecosystems	Available water	Available water relative to demand						
	Water quality regulation	Extent of filtering ecosystems	Actual ecosystem removal of pollutants	Water quality	Health from water pollution & cost of water treatment						
	Soil formation & protection	Extent of ecosystems that create soil fertility	Soil fertility, reflects land use	Soil fertility, reflects ability to use soil	Soil-driven health and income						
	Hazard regulation	Existence of hazard- reducing ecosystems	Actual ecosystem hazard reduction	Incidence and severity of hazards	Hazard-driven health & income						
	Pest regulation	Pest enemy diversity & abundance	Actual control of pests	Vector borne disease & pest-driven damage	Health from vectorborne disease & cost of pest damage						
MATERIAL	Energy	Extent of agriculture & forest land for bio-energy	Bioenergy	harvested	Bio-energy-driven income and security						
	Food & feed	Extent of food producing land & ocean fish stocks	Amount and nutrition o	Nutrition & income from food & feed							
	Materials	Extent of agriculture and forest land for materials	Amount & quality of	Employment & income							
	Medicine	Overlap of species diversity & knowledge	Medicinal sp	Health from natural medicines							
NON-MATERIAL	Learning & Inspiration	Natural diversity in proximity to people	Actual learnin	Income & wellbeing from bio-inspiration							
	Experience	Natural & traditional landscapes in proximity to people	Actual physical and psy in nature for rich/urba	8 Nature-driven quality of life for rich/urban & poor/rural people 8							
	Identity	Land use stability to influence identity	Actual shaping of for rich/urban &	8 Nature-driven quality of life for rich/urban & poor/rural people 8							
2	Options	Amount and diversity of nature to provide future benefits									
	nd since 1970: Morse fidence scale: Quantity an	e Little change I d quality of evidence: O Lo	Better Regional differer	nces: Z Different re	sults among indicators:						
100.424		Level of agreement: \triangle Lo									

Brauman, Garibaldi, Polasky et al. PNAS 2020

Trends over the past 50 years

- Increase in global GDP since 1960: 6.5 X
 - 11.3 trillion in 1960 to 84.9 trillion in 2019 (2010 \$)
- Decline in 14 of 18 categories of nature's contributions to people
- "You get what you pay for."
- "You don't sustain what you don't pay for."

Current market incentives are not enough

Array of investments in nature

Unprofitable

Profitable

Costs > Benefits

Benefits > Costs

Dolpo woman shephard in high pasture and agriculture areas in Nepal . Photocredit: Yildiz Aumeeruddy-Thomas

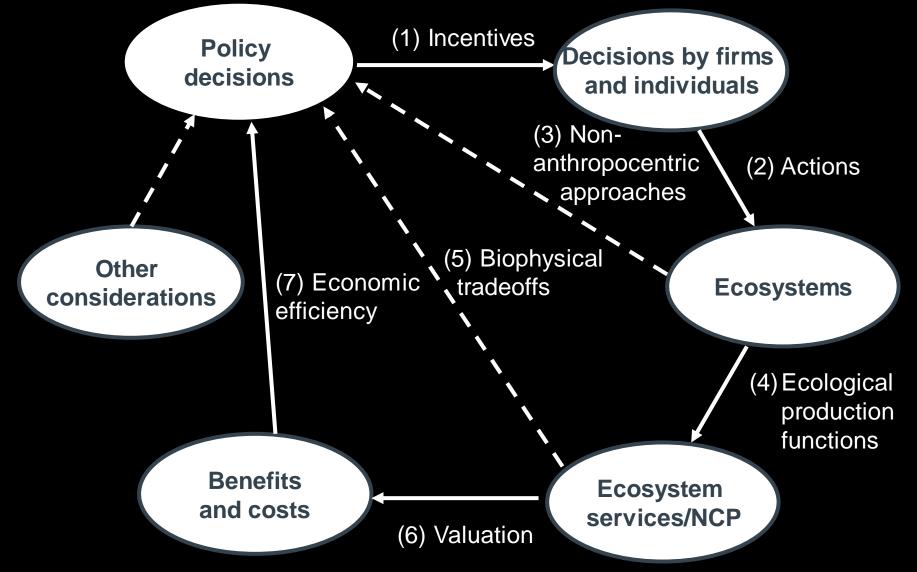
Goal: align incentives through valuation and policy

Array of investments in nature

Unprofitable

Profitable

Costs > Benefits


Benefits > Costs

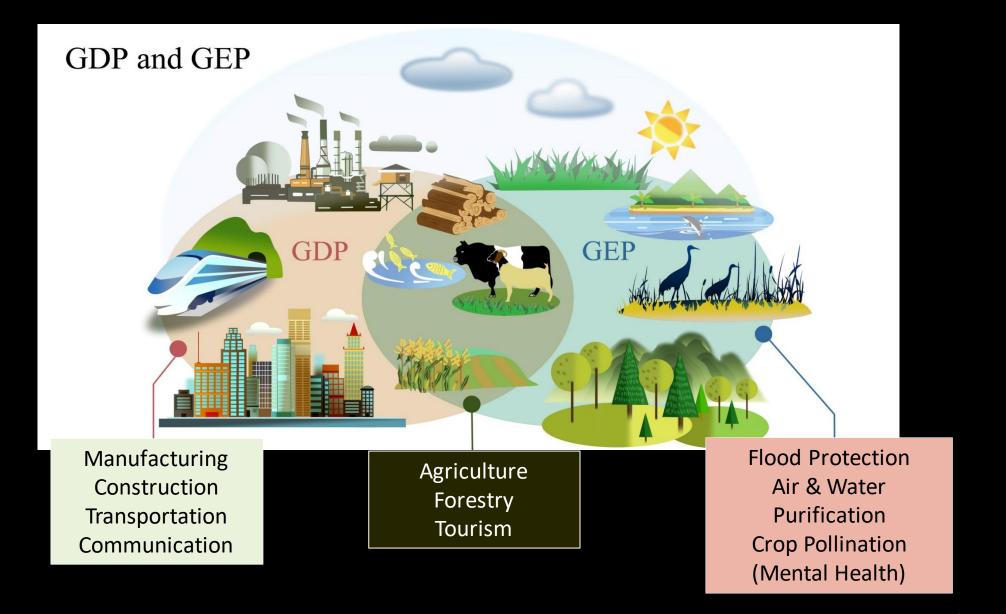
Dolpo woman shephard in high pasture and agriculture areas in Nepal . Photocredit: Yildiz Aumeeruddy-Thomas

Incorporating the multiple values of nature into economic incentives can generate better ecological, economic and social outcomes

hotocredit Daniel M. Caceres

Research agenda for valuing nature: Ecosystem services/nature's contributions to people

Polasky & Segerson. 2009. Annual Review of Resource Economics 1: 409-434.

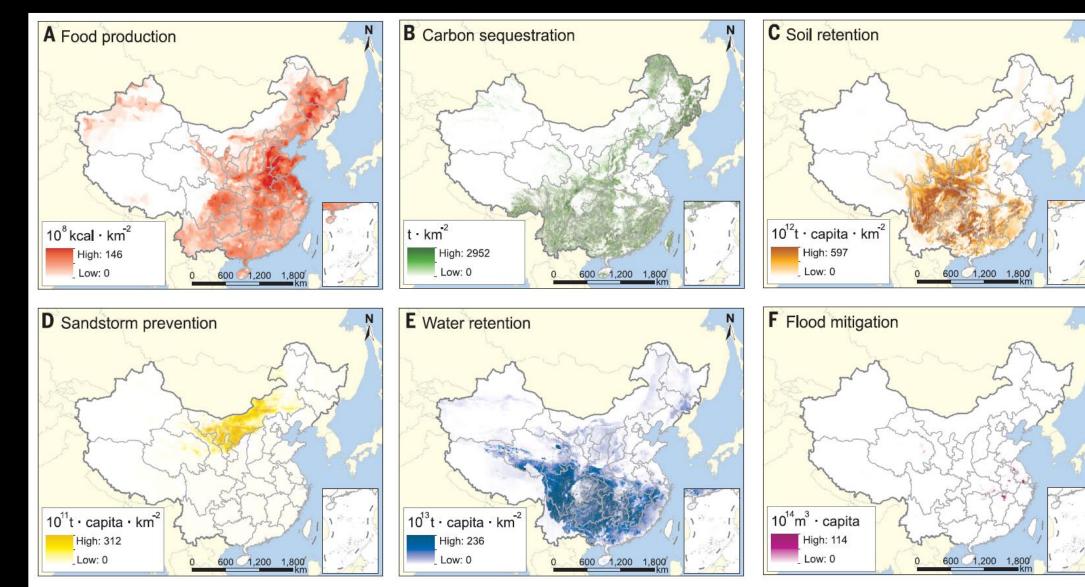

Gross Ecosystem Product (GEP)

Ouyang, Z., C. Song, H. Zheng, S. Polasky, Y. Xiao, I.J. Bateman, J. Liu, M. Ruckelshaus, F. Shi, Y. Xiao, W. Xu, Z. Zou, G.C. Daily. 2020. Using Gross Ecosystem Product (GEP) to value nature in decision-making. *Proceedings of the National Academy of Sciences* 117 (25) 14593-14601

Photo: Juizhaigou Stephen Polasky

China's efforts to develop GEP

- China is developing a new measure of ecological performance: Gross Ecosystem Product (GEP)
- The aim of GEP accounting:
 - Reveal the contribution of ecosystems to the economy and human well-being
 - Show the ecological connections among regions
 - Basis for compensation from beneficiaries to suppliers of ecosystem services
 - Serve as a performance metric for government officials
- GEP will be reported alongside GDP


Ouyang et al. 2020 PNAS

Steps to compute GEP

1. Track the magnitude and condition of biophysical stocks of natural capital (lands, waters, and their biodiversity)

2. Translate into flows of ecosystem goods and services

Ouyang et al. 2016. Improvements in ecosystem services from investments in natural capital. *Science* 352: 1455-1459.

Steps to compute GEP

1. Track the magnitude and condition of biophysical stocks of natural capital (lands, waters, and their biodiversity)

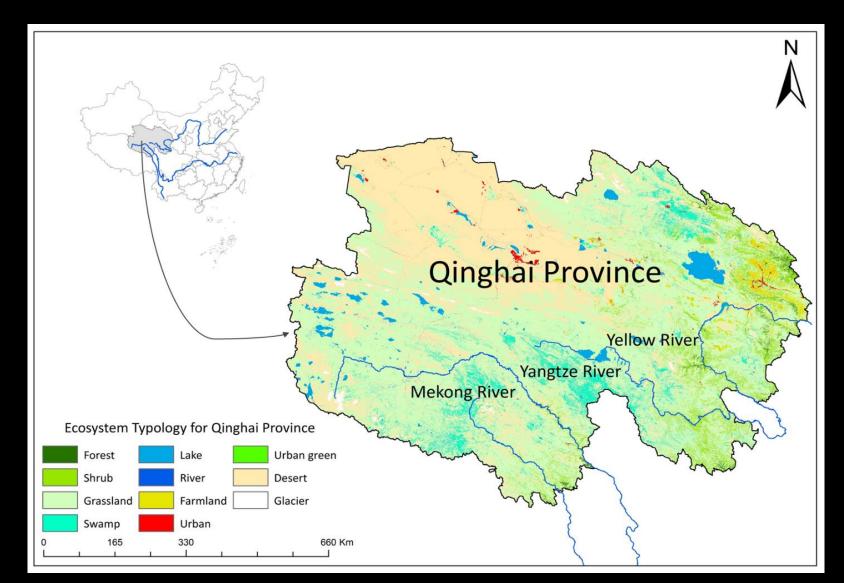
2. Translate into flows of ecosystem goods and services

3. Price ecosystem goods and service flows to get value

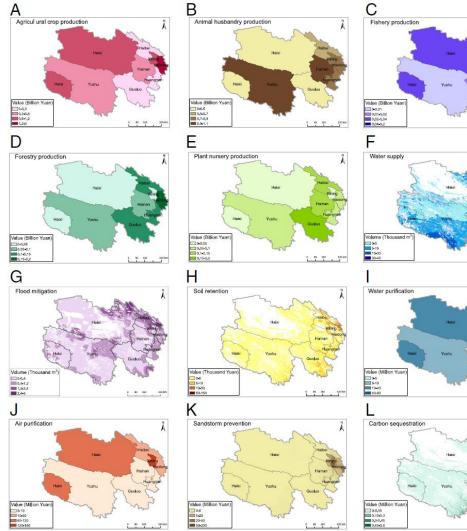
Pricing ecosystem goods and service flows

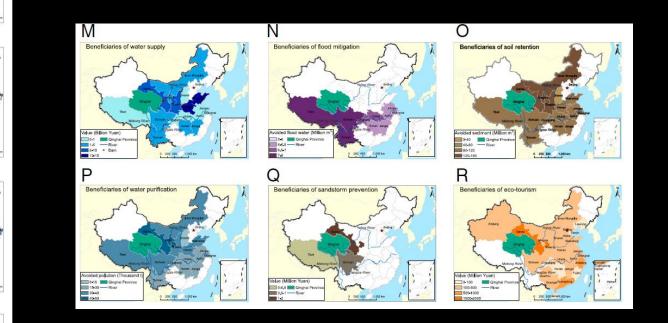
- Many ecosystem goods and services do not have a readily observable market price and are excluded from GDP
- GEP addresses this omission by estimating price analogues for non-market ecosystem goods and services
- Most common methods: imputed values for inputs and replacement cost
- The value of some ecosystem goods and services can be imputed by estimating the value of marginal product, for example the value of water retention services for hydropower production (Guo et al., 2000), pollination for crop production (Ricketts et al. 2004)
- Replacement cost: how much it would cost to replace the ecosystem good or service (e.g., the cost of removing nutrients via water treatments plants)
 - Only valid only the alternative is the lowest-cost way to provide the good or service, and when people would be willing to pay the cost of replacement to provide the good or service (Shabman and Batie 1978)

Steps to compute GEP


1. Track the magnitude and condition of biophysical stocks of natural capital (lands, waters, and their biodiversity)

2. Translate into flows of ecosystem goods and services


3. Price ecosystem goods and service flows to get value


4. Aggregate across goods and services to get GEP

Case study: Qinghai Province

Generation of ecosystem services (A - L) and beneficiaries of services (M - R)

GEP Accounting in Qinghai (2000 – 2015)

	Category of ecosystem services	Accounting items	2000		2015			2000-2015 (constant price)		2000-2015 (current price)		
Types of service			Bio-physical quantity	Monetary value (Billion Yuan)	% of total value	Bio-physical quantity	Monetary value (Billion Yuan)	% of total value	Amount of change (Billion Yuan)	% change	Amount of change (Billion Yuan)	% change
	Production of ecosystem goods	Agricultural crop production (x10 ³ t)	1652.1	1.0	1.2	3091.2	5.6	3.0	4.2	310.6	4.6	482.1
		Animal husbandry production (x10 ³ t)	458.7	1.1	1.4	724	5.8	3.1	4.2	266.4	4.7	419.4
		Fishery production (x10 ³ t)	1.2	0.01	0.01	10.6	0.3	0.1	0.3	2351.5	0.3	3375.0
		Forestry production (x10 ³ m ³)	1800	0.2	0.2	825	0.7	0.4	0.5	247.1	0.6	392.1
		Plant nursery production (x10 ⁹)	0.3	0.2	0.2	11	0.7	0.4	0.5	190.8	0.6	312.2
		Total		2.5	3.0		13.1	7.1	9.7	284.1	10.7	444.5
Material services	Water supply	Water use in downstream agricultural irrigation $(x10^9 \text{ m}^3)$		11.8	14.5		15.0	8.1	-1.5	-9.3	3.2	26.8
		Water use in households (x10 ⁹ m ³)		5.3	6.5		13.8	7.4	6.4	86.5	8.5	160.4
		Water use in industry (x10 ⁹ m ³)		19.4	23.8		29.2	15.8	2.2	8.1	9.8	50.5
		Hydropower production (x10 ⁹ kwh)	21.3	11.3	13.9	92	48.8	26.3	37.5	331.6	37.5	331.6
		Total		47.8	58.7		106.7	57.6	44.5	71.6	58.9	123.3
	Flood mitigation	Flood mitigation (x10 ⁹ m ³)	0.07	0.02	0.03	0.07	0.03	0.02	0.001	2.3	0.01	45.0
	Soil retention and non-point pollution prevention	Retained soil (x10 ⁹ t)	0.4	4.8	5.9	0.4	7.0	3.8	0.13	1.9	2.1	44.5
		Retained N (x10 ³ t)	9.8	0.01	0.01	10	0.02	0.01	0.0003	1.9	0.01	103.9
		Retained P (x10 ³ t)	0.7	0.002	0.002	0.7	0.002	0.001	0.00004	2.0	0.00004	2.0
	Water purification (wetland)	COD purification (x10 ³ t)	33.2	0.02	0.03	104.3	0.1	0.1	0.10	214.0	0.1	528.0
		NH-N purification (x10 ³ t)	3.5	0.00	0.004	10	0.02	0.01	0.01	186.8	0.01	473.6
Regulating services		TP purification (x10 ³ t)	-		-	0.9	0.003	0.001		-		-
		SO ₂ purification (x10 ³ t)	32.0	0.02	0.02	150.8	0.2	0.1	0.15	370.9	0.2	841.8
	Air purification	NO_x purification (x10 ³ t)	-	-	-	117.9	0.1	0.1		-		-
		Dust purification (x10 ³ t)	105.5	0.02	0.02	246	0.04	0.02	0.02	133.3	0.02	133.3
	Sandstorm prevention	Sand retention (x10 ⁹ t)	0.3	21.4	26.2	0.5	31.7	17.1	1.5	4.9	10.3	48.2
	Carbon sequestration	Carbon sequestration (x 10^9 t)	0.01	2.0	2.4	0.02	4.7	2.5	1.9	67.4	2.7	137.3
		Total		28.3	34.7		43.9	23.7	3.9	9.8	15.6	55.3
Non-material services	Eco-tourism	Tourists (x10 ⁶ persons)	3.2	3.0	3.7	23.2	21.6	11.7	21.2	4988.4	18.6	621.3
Grand Total				81.5	100.0		185.4	100.0	79.3	74.9	103.9	127.5

ENVIRONMENT AND SUSTAINABLE DEVELOPMENT

OVERVIEW

Nature's Frontiers

Achieving Sustainability, Efficiency, and Prosperity with Natural Capital

Richard Damania, Stephen Polasky, Mary Ruckelshaus, Jason Russ, Markus Amann, Rebecca Chaplin-Kramer, James Gerber, Peter Hawthorne, Martin Philipp Heger, Saleh Mamun, Giovanni Ruta, Rafael Schmitt, Jeffrey Smith, Adrian Vogl, Fabian Wagner, <u>Esha Zaveri</u>

H WORLD BANK GROUP

Frontiers for Sustainable Development Through Landscape Efficiency

Stephen Polasky, Peter Hawthorne, Rebecca Chaplin-Kramer, James Gerber, Saleh Mamun, Mary Ruckelshaus, Jason Russ, Rafael Schmitt, Jeffrey Smith, Adrian Vogl, Adam Castonguay, James Douglass, Virginia Kowal, Ian Madden, Richard Sharp, Brent Sohngen, Jinfeng Chang, Gretchen Daily, Martin Heger, Matthew Holden, Justin Johnson, Lisa Mandle, Eve McDonald-Madden, Urvashi Narain, Deepak Ray, Giovanni Ruta, Paul West, Stacie Wolny, Esha Zaveri, Richard Damania

Photo: Juizhaigou Stephen Polasky

Nature's Frontiers

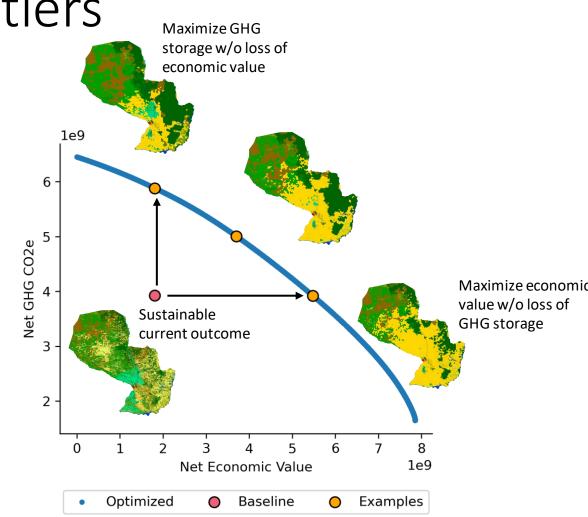
- Goal: find land use pattern that optimizes for multiple benefits
- Land uses:
 - Cropland (irrigated v. rainfed intensified, best management practices)
 - Grazing
 - Forestry
 - Natural habitat
- Multiple benefits
 - Net income from crops, livestock, timber
 - Carbon storage
 - Biodiversity
- Accounting for multiple benefits can improve sustainable environmental and economic outcomes

Modeling approach

Analyze current landscape and potential alternative landscapes

Economic metrics (net returns)

- Cropland production
 - Multiple management choices
- Forestry
- Grazing
- Transition costs

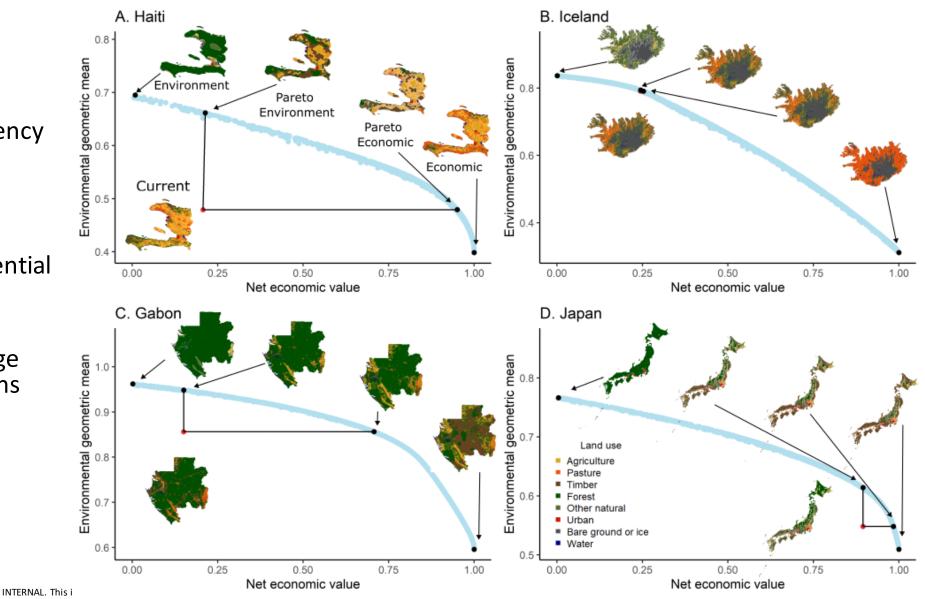

Ecosystem metrics

- Carbon storage/greenhouse gas emissions
- Biodiversity
- (Water quality, other ecosystem services)

Landscape efficiency frontiers

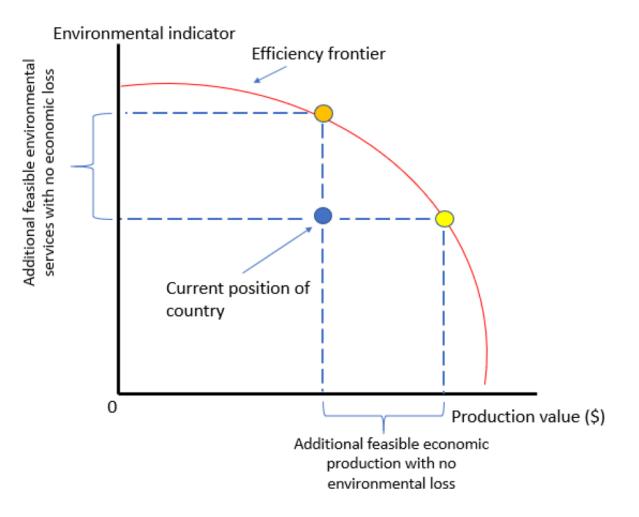
- Landscape efficiency frontiers: achieve highest feasible combinations of environmental and economic outcomes
- Use optimization methods to find frontiers
- Compare with score for current landscapes to find degree of potential improvement

Landscape efficiency frontiers (146 countries)


Typology of countries:

A. Large potential efficiency gains

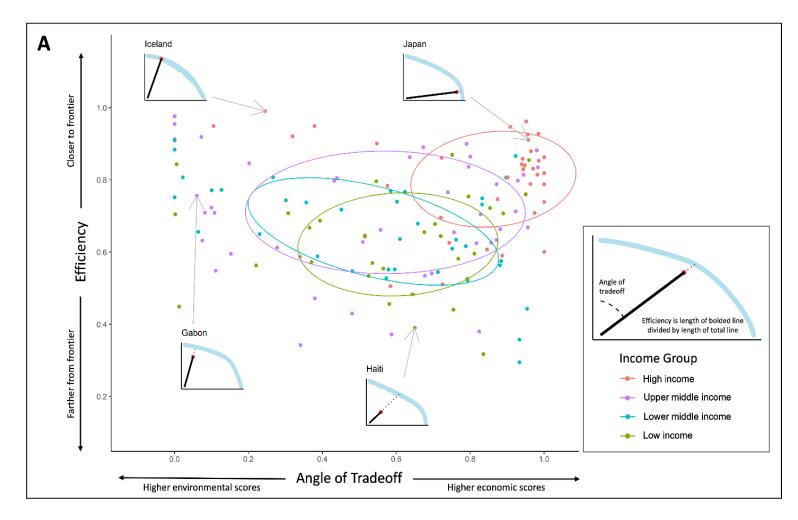
B. Tradeoffs


C. Low-income lowdevelopment: large potential gains in economic development

D. Highly developed: large potential restoration gains

Large potential gains across 146 countries

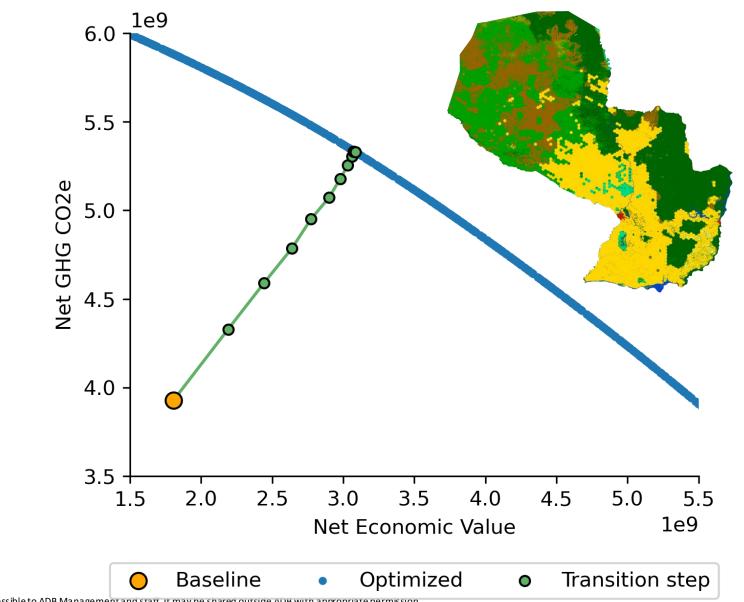
- More than 233 billion metric tons of CO₂E could be sequestered without adverse economic impacts (~4 years of global emissions)
- Or
- Annual returns from crops, grazing, forestry could be increased by >\$368 billion without loss to biodiversity or GHG sequestration



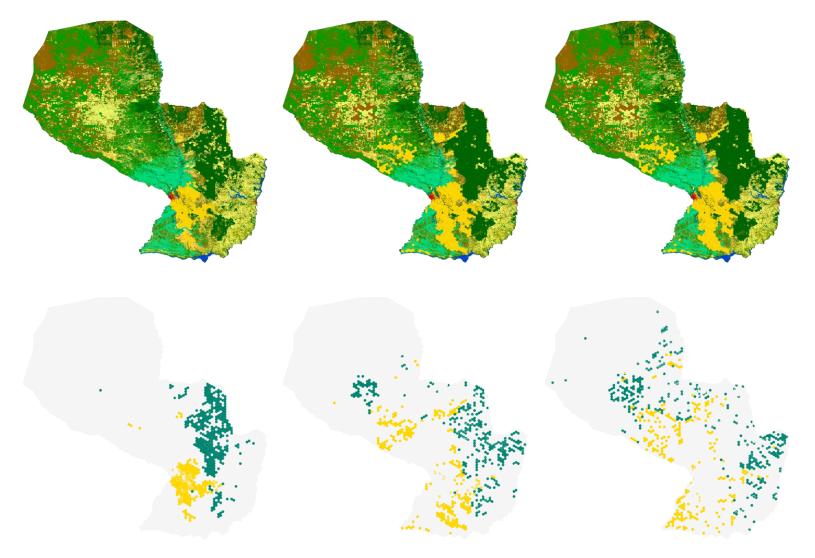
Environmental/economic orientation and efficiency by country

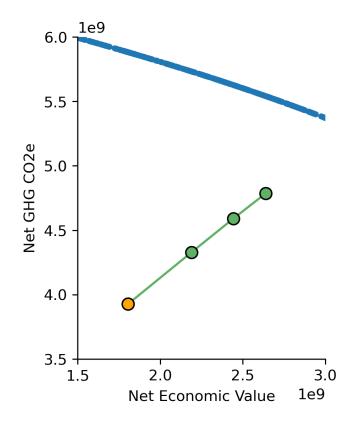
INTERNAL. This information is accessible to ADB Management and staff. It may be shared outside ADB with appropriate permission.

Summary statistics on current performance by income group


INTERNAL. This information is accessible to ADB Management and staff. It may be shared outside ADB with appropriate permission.

Frontier analysis illustrates what is potentially feasible


Transition pathways show incremental steps


 Smaller-scale changes that yield benefits across all objectives

INTERNAL. This information is accessible to ADB Management and stan. It may be shared outside ADB with appropriate permission

Example of 3 transition steps

% of possible gains obtained:

- Economic: 65%
- Carbon storage: 61%

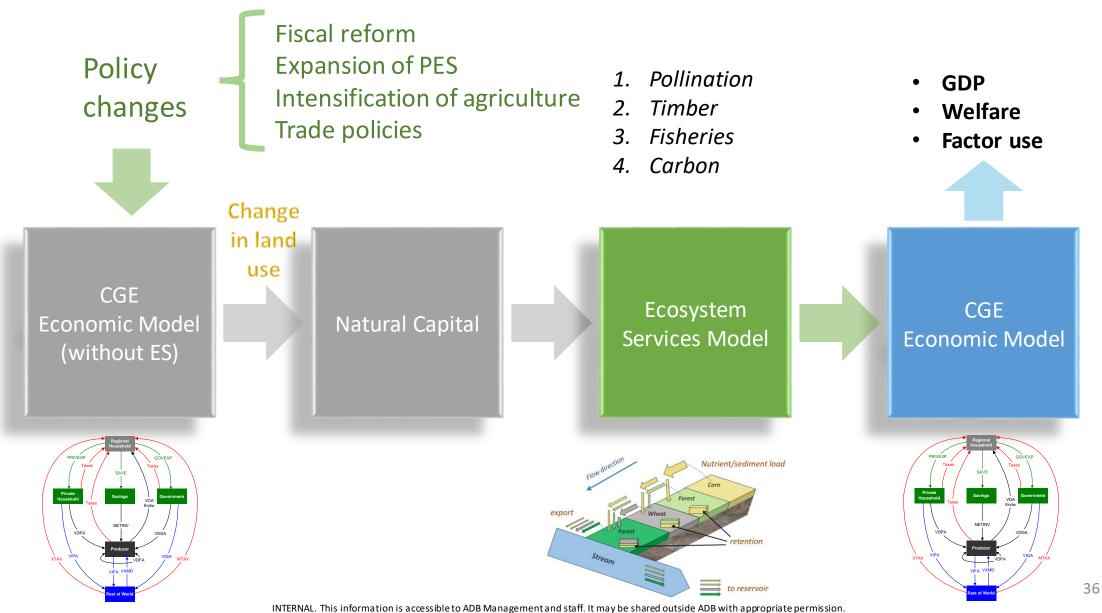
INTERNAL. This information is accessible to ADB Management and staff. It may be shared outside ADB with appropriate permission.

Global Earth-Economy Modeling

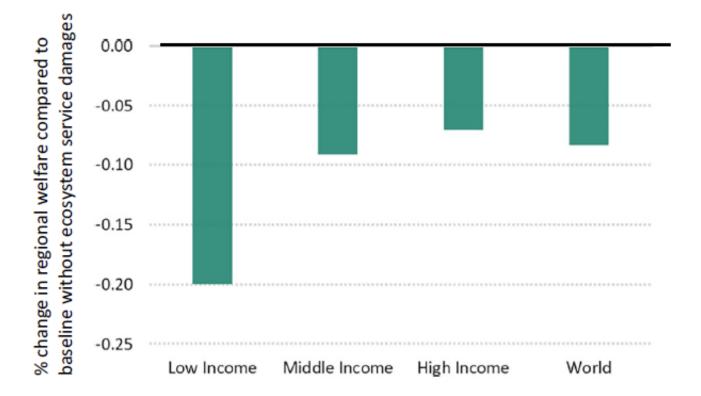
RESEARCH ARTICLE

PNAS

Investing in nature can improve equity and economic returns

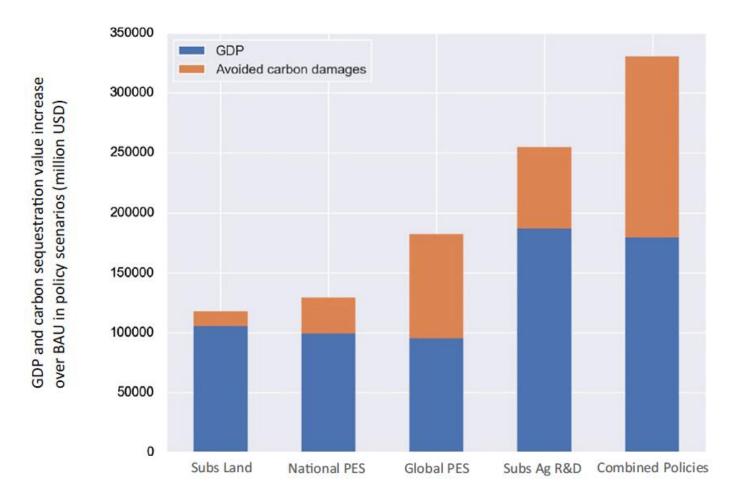

Justin Andrew Johnson^{a,1}, Uris Lantz Baldos^b, Erwin Corong^b, Thomas Hertel^b, Stephen Polasky^{a,1}, Raffaello Cervigni^c, Toby Roxburgh^d, Giovanni Ruta^c, Colette Salemi^e, and Sumil Thakrar^a

ECONOMIC SCIENCES

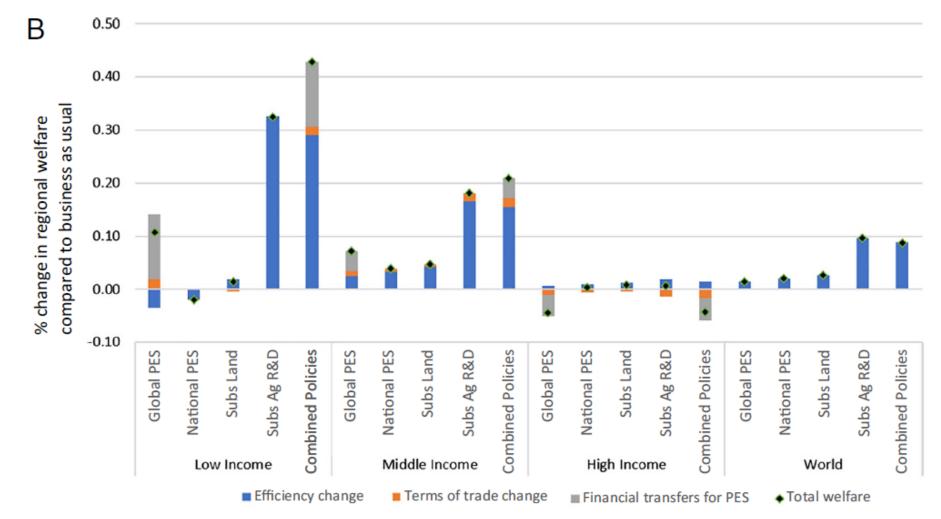

ENVIRONMENTAL SCIENCES

INTERNAL. This information is accessible to ADB Management and staff. It may be shared outside ADB with appropriate permission.

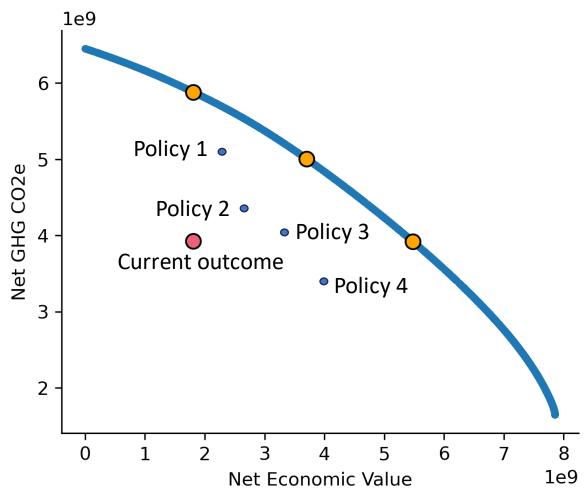
The Global Earth-Economy Model in a nutshell


Change in monetary measure of regional welfare to 2030 due to losses of ecosystem services under business-as-usual (BAU)

How can policies improve outcomes?


- Three policies assessed with GTAP-InVEST
- 1. Remove agricultural production subsidies
- 2. Payments for ecosystem services (local version, global version)
- 3. Agricultural research and development

Gains in GDP and avoided carbon damages under different policies relative to BAU


INTERNAL. This information is accessible to ADB Management and staff. It may be shared outside ADB with appropriate permission.

Gains/losses to different income groups under alternative policies

INTERNAL. This information is accessible to ADB Management and staff. It may be shared outside ADB with appropriate permission.

Combining Earth-economy models and nature's frontiers (the next research frontier)

Summary

- The Great Depression in the 1930s led society to realize the urgent need for better macroeconomic performance metrics, such as GDP, to help guide economic policy
- The current "Great Degradation" in nature should lead society to realize the urgent need for better metrics of ecosystem services and natural capital and incorporating these into decision-making to help guide sustainable development

Questions?

Photo: Juizhaigou Stephen Polasky