

This is not an ADB material. The views expressed in this document are the views of the author/s and/or their organizations and do not necessarily reflect the views or policies of the Asian Development Bank, or its Board of Governors, or the governments they represent. ADB does not guarantee the accuracy and/or completeness of the material's contents, and accepts no responsibility for any direct or indirect consequence of their use or reliance, whether wholly or partially. Please feel free to contact the authors directly should you have queries.

The Historical Progression of Pollution Control Measures in Shanghai's Coal-fired Power Plants

Mr. Jianzhi Zhao

Deputy Director of the Department of Atmospheric Ecology Shanghai Municipal Bureau of Ecology and Environment

CONTENTS

- 01 BACKGROUND
- **O2 GOVERNANCE**
- 03 INSIGHTS

01 BACKGROUND

Overview of the global power generation sector

- Coal is the predominant source for electricity and heat generation globally, contributing to **36%** of global electricity production.
- Over the past 30 years, while the share of coal power continues to rise, other renewable energy sources also grows rapidly.
- In the coming 15 years, although increased adoption of renewable energy generation techniques is expected, coal will still remain the main source of electricity and heat generation.

Energy sources for electricity generation in developed countries

Even in developed countries, i.e., the United States, Germany, Australia, Japan, and South Korea, coal is still the main energy source for electricity generation, accounting for ~20% to 55%

Energy sources for electricity generation in China

Although electricity generation from clean energy in China has been **increasing** year by year, coal still accounts for **over 60% of total energy utilized for electricity generation**

Electricity production in China using different sources of power between 1990 and 2020

Coal consumption for electricity generation in China

- In 2022, the standard coal consumption for power generation in thermal power plants with a capacity of 6,000 kW or above was 300.7 g/kWh, lower by ~23% than that in 2000
- The coal consumption for generating 1 kWh of electricity in Shanghai is slightly lower than the national average

National standard coal consumption for power generation of thermal power plants with ≥6000 kW from 2000 to 2022

Coal consumption for electricity generation across different

provinces of China

Clean coal-fired energy sector development in China

- Elimination of outdated and excessive production capacity: 300 million tons (MT) of iron and steel, 400
 MT of cement, 150 million weight boxes of flat glass;
- The world's largest clean coal power supply system has been built, and ultra-low emission retrofit
 has been accomplished for 1.03 billion KW of coal power and 630 MT of crude steel production capacity
 :
- National coal-fired boilers and furnaces reduced by 400,000 units; more than 27 million households
 has accomplished renovation for clean heating in winter, reducing the burning of raw coal by more than
 60 MT in total; 2/3 of the newly increased energy consumption became clean energy.

Coal consumption and SO₂ annual concentration trend in Beijing from 2012-2017

Emissions from coal power plants (2005-2017)

Green Energy and Low Carbon Transition in Shanghai

Promoting the development of non-fossil energy sources

The 13th Five-Year Plan		The 13th Five-Year Plan		2025			2025	
Proportion of primary		Proportion of non fossil		Proportion of natural gas		tural gas	Proportion of non fossil	
energy consumption		energy consumption		consumption			energy consumption	
37%→31%	10%→12%	14%→18%	Below 30%	12%→	17%	36% & 8%	20%	
	The 13th Five-Year Plan Proportion of natural gas consumption		2025 Total coal by 5% ; Proportio consump 30%	2025 Total coal consumption c rop by 5%; Proportion of primary energy consumption drop to below 30%		2025 Renewable energy and local renewable energy respectively take up 36% and 8% of the total electricity consumption in the whole society		

02 GOVERNANCE

Policies

	0
中1 大4	华人民共和国 气污染防治法
	s GB
	中 华 人 民 共 和 因 国 家 标 准 =======

10000.00

- 1. Law of the People's Republic of China on the Prevention and Control of Atmospheric Pollution: the fundamental law in China for the prevention and control of atmospheric pollution, including regulatory requirements for emissions from coal-fired power plants.
- Emission Standards for Air Pollutants from Coal-fired Power Plants (GB13223-2011): sets the emission limits for primary air pollutants, including SO₂, NO_x, PM, and other pollutants emitted from coal-fired power plants in mainland China.
- Emission Standards for Exhaust Gases from Coal-fired Power Plants (GB13271-2014): specifies the requirements for exhaust gas emissions during the operation of coal-fired power plants in mainland China.
- 4. Shanghai Regulations on the Prevention and Control of Atmospheric Pollution: specifically address the prevention and control of atmospheric pollutant emissions from coal-fired power plants in Shanghai.
- 5. Shanghai Emission Standards for Air Pollutants from Coal-fired Power Plants (DB31/387-2012): supplements and refines the requirements of GB13223-2011 and provides specific emission requirements for coal-fired power plants in Shanghai.
- 6. Environmental Protection Requirements for Coal-fired Power Plants in Shanghai: These requirements outline specific regulations for environmental protection aspects, including air, water, noise, and other relevant factors for coal-fired power plants in Shanghai.

Standards

- Comparing with foreign countries overseas, the new air pollutant emission standard for thermal power plants is considered the most stringent (GB13223-2011)
- Comparing with other fixed coalfired facilities in China, the emission limit for thermal power plants is the most stringent

Techniques – Ultra-clean emission retrofits

Shangdian Caojing Power Generation company in Shanghai:

It is a key project of Shanghai's 11th Five Year Plan, located in Jinshan District with two 1-millionkWh ultra-supercritical coal-fired units

Techniques – technological progress

- Measures have been taken to enhance the efficiency and coordinate retrofits for dust removal in the existing desulfurization system, including the addition of a wet electrostatic precipitator, a flue gas reheat system, and a wet flue gas desulfurization wastewater collection and drainage device
- This project involved comprehensive computational fluid dynamic simulations and optimization of the flue gas system and purification of the facilities. Additionally, systematic optimization of boiler lownitrogen combustion and selective catalytic reduction (SCR) denitrification operations has been carried out

Standard	PM (mg/m³)	SO₂ (mg/m₃)	NO _x (mg/m₃)
Emission Standards for CFPP (GB13223-2011)	20	50	100
Ultra-low Emission Standards for CFPP	10	35	50

Process flow diagram of the system after modification

Denitration technology

- This project adopts low NO_v combustion + SCR denitrification synergistic optimization scheme to reduce the NO_x concentration at the outlet of the furnace, to improve the efficiency of SCR denitrification, and meanwhile to control the concentration of fugitive ammonia.
- The flue gas NO_x concentration at SCR inlet is **160~220 mg/m³**, after the SCR denitrification, the emission reaches the design requirement of 22 mg/m^3 .

Process flow diagram of denitrification system

100~130

20~30

燃尽区域

追加空气40%

-40%

40~50 40~50

燃尽区域

追加空气30%

Desulfurization technology

- Synergistic dust removal with single-pallet rectification efficiency
- Wall ring rectification prevents wall escape of raw flue gases and increases efficiency
- High liquid-gas ratio efficiency shower with 46.8% higher slurry flow rate
- Three-stage roof-mounted high-efficiency mist and dust removal
- After the renovation, the efficiency of desulfurization reached 98.72% and SO₂ emission concentration reduced to 16 mg/m³

Process flow diagram of desulfurization system

Dedusting technology

- Make full use of low-temperature electric precipitator, absorption tower synergistic de-dusting and wet electric precipitator to carry out deep de-dusting
- The particulate removal rate of wet ESP is \geq 75%; SO₃ removal rate is 40%

Wet electrostatic precipitator process flow chart and appearance

Improvement in emission

 SO_2 , NO_X , and PM concentrations are reduced by **52.3%**, **30.2%** and **65.9%**, respectively, compared to the pre-retrofit period

03 INSIGHTS

Insights

- Coal-fired power generation is expected to remain the predominant method for electricity production for the foreseeable future. It is crucial to prioritize
 the development of high-efficiency and clean power generation technologies, as well as to explore the potential for energy conservation and emissions
 reduction in coal-fired power generation.
 - To mitigate the adverse environmental impact of coal-fired power plants, it is recommended to conduct **research on secondary pollution, synergistic control of heavy metals, and CO₂ emission**.

Thank you for listening!