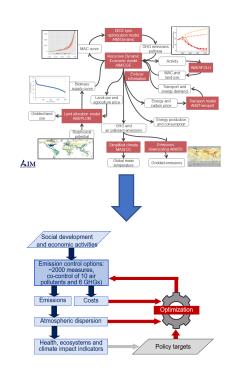


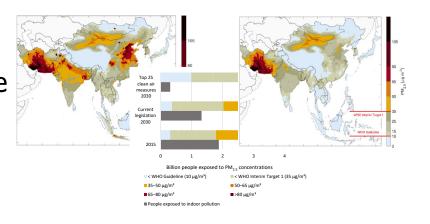
Air quality and health co-benefits of coordinated environmental and climate policies in Asia

Zbigniew Klimont¹, Gregor Kiesewetter¹, Daniel Hooke¹, Shinichiro Fujimori², Jessica Slater¹

¹ Energy, Climate and Environment program, IIASA, Austria

² Kyoto University and NIES, Japan





Tools and approach

- AIM National decarbonization and climate policy scenarios for six countries (Kyoto University, Japan)
- GAINS Air pollution and health benefits (IIASA)
 - Build a link between AIM and GAINS to downscale AIM scenarios to be used in GAINS for co-benefit and impact assessment
 - Develop Asia-wide scenario set
 - Calculate and analyze PM_{2.5} concentrations, exposure, and health impact indicators at a national/regional scale

Scenarios

(China, Korea, Japan, Inida, Thailand, Vietnam)

Focus on six countries

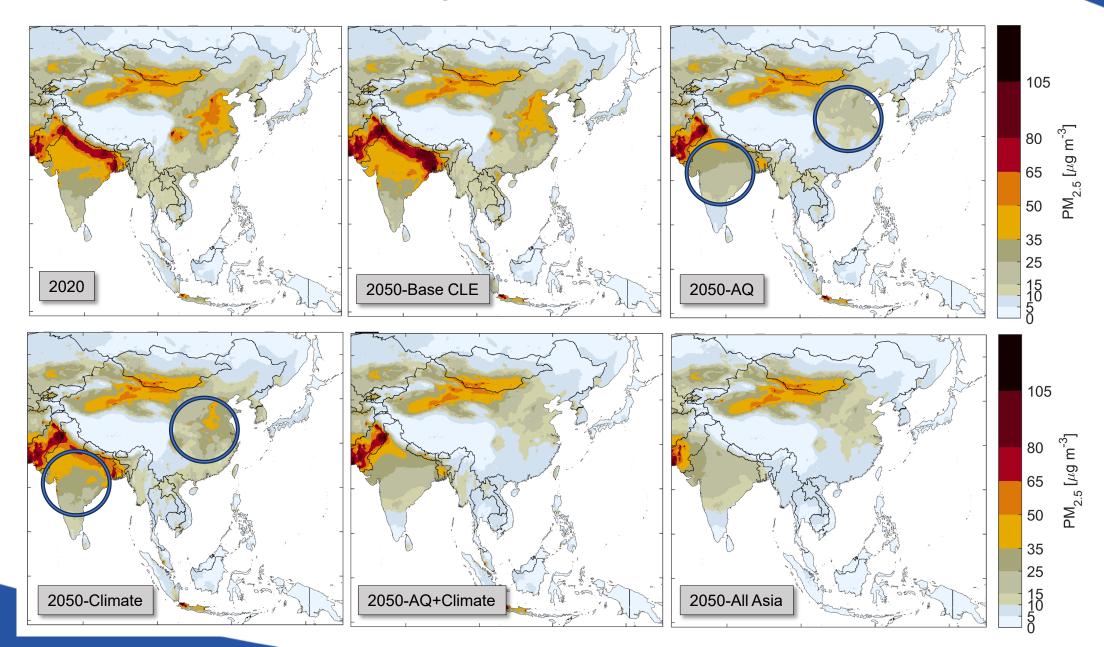
• Base CLE: Effective implementation of current legislation

• AQ: Priority -> Air Quality improvement: implementation of all, included in the GAINS

model, technical mitigation measures, considering their feasibility

Climate: Priority -> Climate mitigation: implementation of policies represented in the

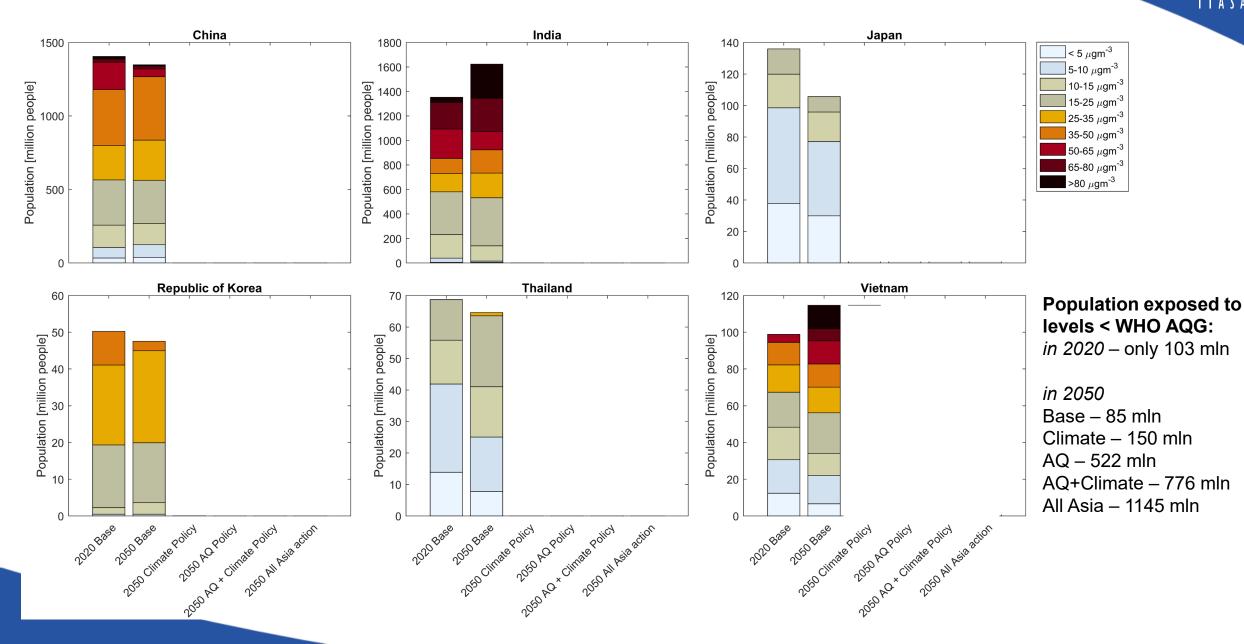
recent NDCs and further measures (beyond 2030) to achieve 90% reduction of

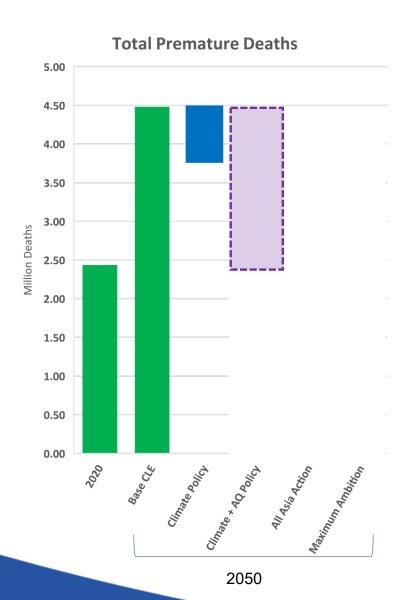

CO₂ emissions by 2050, compared to 2010

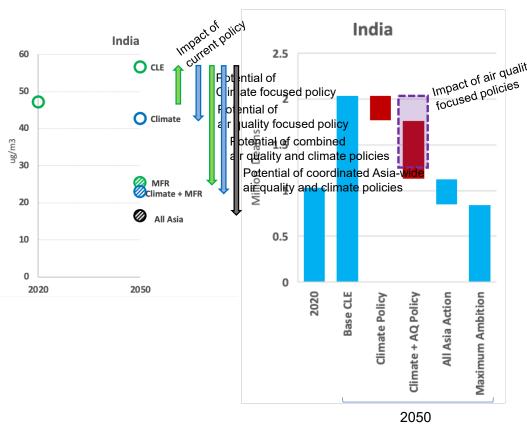
AQ+Climate: Ambitious air quality (AQ) and climate policies (Climate)

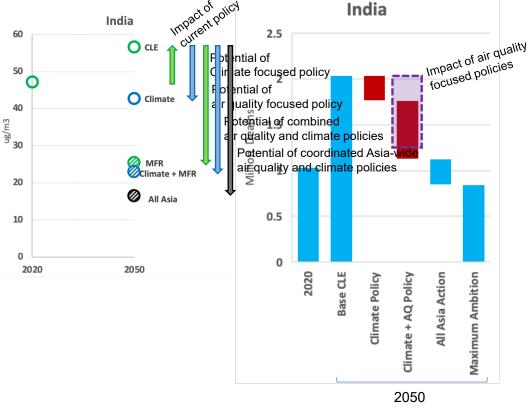
• All Asia: Ambitious AQ + Climate policies are implemented across the whole of Asia

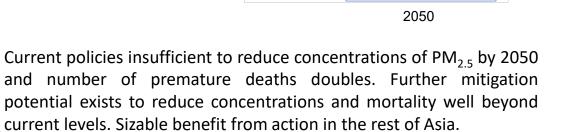
Change in annual mean PM_{2.5} concentrations

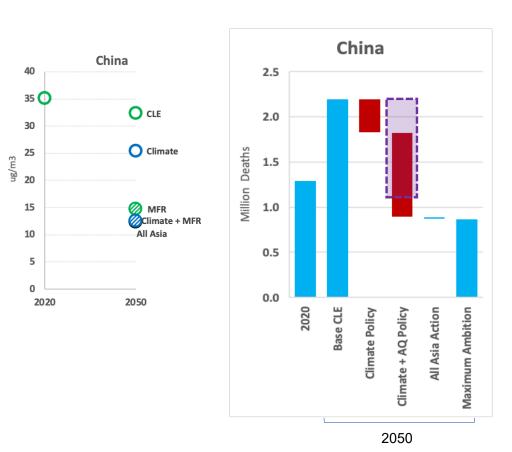



Change in population exposure to PM_{2.5}


- Nearly 2.5 million premature deaths in the six Asian countries** in 2020
- Current policies appear insufficient to reduce death toll from air pollution in the region; by 2050, premature deaths could increase to 4.5 million
- Climate policy air quality co-benefits would result in about 0.7 million, less premature deaths (-15%), however...
- Proven and well understood air quality measures could deliver reduction of premature deaths by over 2 million (- 45%)
- Combined air quality and climate policies could reduce premature deaths by about 50%
- Coordinated ambitious climate and air quality policy across all Asia could reduce premature deaths over 60% compared to the current policy case


^{*} China, India, Japan, Korea, Thailand, Vietnam


^{**} The population of these six countries represent nearly 70% of total Asian population


Change in PM_{2.5} concentrations and number of premature deaths, due to ambient PM_{2.5}, for selected countries

Current policies result in reduction in concentrations of PM_{2.5} by 2050, however, number of premature deaths increases. Further mitigation potential exists to reduce concentrations and mortality well beyond current levels. Little benefit from action in the rest of Asia.

Summary

- Currently, only about 100 million people enjoy clean air* in the countries in focus of this study (China, India, Japan, Korea, Thailand, Vietnam) ...about 3%
- Current policies appear insufficient to reduce death toll from air pollution in the region; by 2050, premature deaths could increase to 4.5 million (80% more than in 2020)
- While climate policy would bring air quality co-benefits and reduce premature deaths by about 0.7 million, ambitious air quality policy could increase that number to 2 million and over 520 million (about 15%) would breathe clean air
- Ambitious climate policies and further development measures implemented across Asia could reduce premature mortality by about 60%, compared to current policy, and
 - More than a third of population (or 1145 million) would be exposed to concentrations below WHO AQG,
 - All population would enjoy at least WHO Tier I standards (< 35 ug/m³) or better, in compliance with national legislation

Slides from Dan Hooke, in case he cannot connect

Asia Clean Air and Climate Explorer

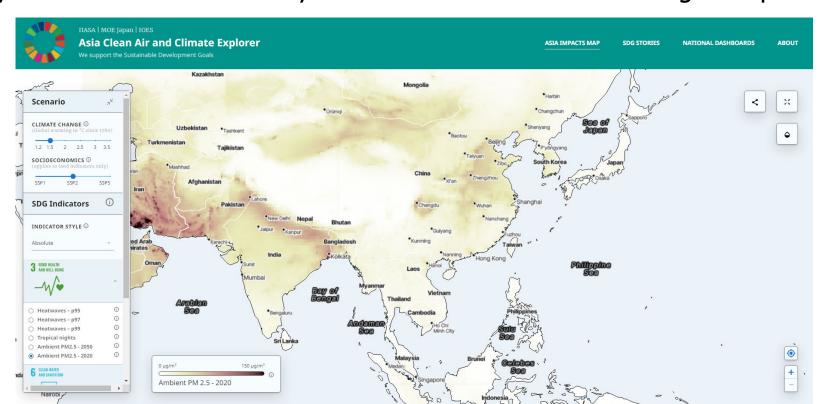
Better Air Quality Conference, Manila

Access the site here!

https://asia-climate-explorer.org/

Asia Clean Air and Climate Explorer structure

Impacts Explorer


- Interactive Maps
- Ordered by SDG

SDG Stories

- Articles with interactive charts Country level
- Policy briefs

National Dashboards

- Mitigation pathways and impacts

Asia Clean Air and Climate Explorer structure

Impacts Explorer

- Interactive Maps
- Ordered by SDG

SDG Stories

- Articles with interactive charts Country level
- Policy briefs

National Dashboards

- Mitigation pathways and impacts

Jessica Slater, Zig Klimont

IIASA 2023-10-03 Country

Exposure to air pollution is one of the leading causes of premature mortality worldwide. However, this health burden is not distributed equally across the globe with almost 60 % of deaths from air pollution exposure occurring in the Asia-Pacific region (UNEP 2018). There is substantial overlap in both the

Key Insights

· Greenhouse gases and air pollutants substantial potential for mitigating climate change by acting on air

Asia Clean Air and Climate Explorer structure

<u>Impacts Explorer</u>

- Interactive Maps
- Ordered by SDG

SDG Stories

- Articles with interactive charts Country level
- Policy briefs

National Dashboards

- Mitigation pathways and impacts

Three sources of data

1. Pollution Indicators	2. Climate Indicators	3. Mitigation Pathways
 PM_{2.5} All Asia Population Exposure 6 countries Premature mortality 6 countries 	 Precipitation & Temperature extremes Heat stress events and Tropical nights Hydrology & water resources Energy demands for cooling Land use change & crop yields 	 Emissions Energy supply & demand Carbon Sequestration variables
IIASA GAINS model	CMIP6/ISIMIP3b, IAMs, Hydrological models, land system models	MESSAGE _{ix} -GLOBIOM IAM
5 policy scenarios: - Current Policies - AQ policies only - Climate policies only - AQ policies + climate policies - All Asia AQ + climate policies	6 GMT thresholds: - 1.2°C, 1.5°C, 2.0°C, 2.5°C, 3.0°C, 3.5°C	4 scenarios: - Current Policies - NDC delayed action 2030 - Glasgow - Glasgow++ (1.5 °C)

Exploring Asia Air Quality Scenarios

ASIA IMPACTS MAP

SDG STORIES

NATIONAL DASHBOARDS

ABOUT

Japan

OVERVIEW

AIR POLLUTION & HEALTH

EMISSIONS & ENERGY

WATER RESOURCES

CLIMATE EXTREMES

AGRICULTURE & LAND USE

Clean Air, Climate and the SDGs

The SDGs are a set of 17 goals adopted by the UN General Assembly in 2015, In this section, explore the data for Japan on: which aim to achieve a better and more sustainable future for all.

The SDGs address the global challenges we face, including those related to poverty, inequality, climate change, environmental degradation, peace and justice. The SDGs are interconnected, and in order to leave no one behind, it is important that we achieve each goal and target by 2030.

Reducing air pollution contributes directly to:

- SDG3: Good Health and well-being
- SDG11: Sustainable cities and communities

Air Pollution Distribution Pollution Exposure **Premature Mortality Tropical Nights**

Industrial air pollution in Heilongang, China. Credit: Ziang Guo/Unsplash

Air Pollution

Air pollution is a major risk to the good health and well-being of sustainable cities and communities, particularly in Asia. While the issues of air pollution and climate change are also strongly interlinked. Some air pollutants, known as short lived climate pollutants, directly warm the atmosphere and contribute to climate change. While due to the overlapping Absolute air pollution for Japan in 2020

Difference in air pollution for Japan in 2050 under Current Policies compared to 2020

Visit the

Asia Clean Air and Climate Explorer!

https://asia-climate-explorer.org/

