

THE ADB CIRCULAR ECONOMY WORKING GROUP WEBINAR SERIES 2023

ADB CEWG WEBINAR SESSION #19

Closing the loop on food waste with insect bioconversion

28th September, 2023

This is not an ADB material. The views expressed in this document are the views of the author/s and/or their organizations and do not necessarily reflect the views or policies of the Asian Development Bank, or its Board of Governors, or the governments they represent. ADB does not guarantee the accuracy and/or completeness of the material's contents, and accepts no responsibility for any direct or indirect consequence of their use or reliance, whether wholly or partially. Please feel free to contact the authors directly should you have queries.

FOOD WASTE - WHAT A WASTE!

Only 2% of the nutritional value in our food is recycled

The flow of materials in the food system is overwhelmingly linear

1 Such as fertilisers or pesticides; 2 as per FAOSTAT "Production" definition, i.e. typically reported at the first production level (farm level for crops and animal products; live weight for seafood) 3 Human waste include solid and liquid waste, expressed in wet mass; 4 food wasted in cities includes distribution and consumption stages

Better Solutions

FOOD WASTE - CURRENT RESPONSES

Landfill

Composting

Biogas/fuel

Combustion

Sewer

Food Recovery Hierarchy

SOURCE REDUCTION

FEED HUNGRY PEOPLE

FEED ANIMALS

INDUSTRIAL USES

COMPOSTING

LANDFILL/ INCINERATION

Most prefe

east preferred

INSECT BIOCONVERSION - NATURE'S WAY

Food & Other Organic Waste

Frass (fertiliser)

Livestock & Aquaculture Feed

CASE STUDY - MYANMAR

Local market waste

Education

Chicken Farm Self-sufficiency / income

Maximising utilisation of Natural Capital

Demonstration

Community Capacity Building

Community Engaged Research: PHILIPPINES 2016-2018

Local market waste

Education

Chicken, Tilapia, Vegetables, Rice Self-Sufficiency / Income

Training: Waste Treatment & Insects

Community Capacity Building

From Lab to Garage, to ~\$1.6B Industry

Vietnam, 2013 **\$30M Series B**

Indonesia, 2013 Research Station, \$1M 2023

Netherlands, 2009 \$126M in 6 rounds

France, 2011 **\$625M Series D**

Malaysia, 2020 \$34M in 6 rounds \$20M from Sumitomo, 2022

Finland, 2022, \$1.8M

Beneficial Insects --> Services & Products (Value)

Circular bio-Economy ENABLER.

Recovery of Nutrients & Energy. **Regeneration of SOILS. Reduce METHANE.** Remove CO2.

Natural Services

Protein + fats & oils + fertilizer + chitin **Natural Products**

Livelihood **Green Jobs Resource Security** VS Diseases Wars Weather

SDGs

BENEFITS OF INSECT BIOCONVERSION:

FOOD SECURITY 100 kg WASTE (dm) **10kg PROTEIN + 20 kg FERTILIZER** 2 weeks

47 X LESS GHG vs windrow composting.** **Avoids Methane!**

Direct GHGe: 96 g CO2/kg waste CH4 & N20 = 0.38 kg CO2eq/TON waste*

DISEASE CONTROL -99.9% Reduction of Salmonella & E.coli. **SUPPRESS** HOUSEFLIES

Livestock Higher survival More Meat, Eggs Fish

*Lalander et al 2019, 2022

RENEWABLE ENERGY OPPORTUNITY.

GWP 100kg dried larvae = 6.7 kg CO2eq **{Electricity for drying the** larvae ~70%} **

2.5 to 5x INCREASE Vegetable Yields***

SOIL **REGENERATION CARBON** Drawdown.

**Mertenat et al 2018

***Nugroho et al 2023

SUSTAINABLE DEVELOPMENT GOALS

SDGs **directly** affected by insects for food & feed

9 INDUSTRY, INNOVATION AND INFRASTRUCTURE **B** DECENT WORK AND ECONOMIC GROWTH NO Poverty 12 RESPONSIBLE SUSTAINABLE CITIES AND COMMUNITIES CONSUMPTION AND PRODUCTION **M:***** 5 GENDER Equality **13** CLIMATE ACTION 2 ZERO HUNGER 15 LIFE ON LAND 14 LIFE BELOW WATER

Edible Insects and Sustainable Development Goals https://doi.org/10.3390/insects12060557

17 PARTNERSHIPS FOR THE GOALS

SDGs **indirectly** affected by insects for food & feed

Other

ADB & INSECTS as a NATURE-BASED SOLUTION

	SOLID WASTE MANAGEMENT	CLIMATE ACTION	GREEN ECONOMY	BLUE ECONOMY	ACTIONS
	50 % of MSW diverted from landfills in megacities	Avoided emissions 47x less methane	Livelihood & jobs Create SMEs, Industry	Alternative protein for animal feed (vs fish meal)	Evaluate Safety
	SIDS Saves landfill space on small islands	Carbon sequestration (insect biomass, chitin, +biochar)	Food security & Nutrition.	Reduce Eutrophication (organic fertiliser).	Green Finance
	Sanitation & Health (Vermin, flies, roaches, pathogens	Reduced Air Pollution (e.g. avoid open dumping & burning)	Regeneration of degraded soils & land.	Bioplastics for Fishing Gear	Education
Potential Application	Composting - Mongolia, Pacific Islands - Nauru	Biochar - Thailand, Nepal, etc	Reforestation, Upland Farming Thailand, Laos,	Land based aquaculture - Thailand, Vietnam, Philippines	Market Development

QUESTIONS

Jeannine Malcolm Co-founder Mobius Farms (AU) in jeannine-malcolm-b8975b2

Neil Ian Lumanlan Circular Economy & Technologies Consultant (PHL) e: supermicrobes1@gmail.com

