ADB Technical Assistance Strengthening WASH in the Pacific The views expressed in this presentation are the views of the author/s and do not necessarily reflect the views or policies of the Asian Development Bank, or its Board of Governors, or the governments they represent. ADB does not guarantee the accuracy of the data included in this presentation and accepts no responsibility for any consequence of their use. The countries listed in this presentation do not imply any view on ADB's part as to sovereignty or independent status or necessarily conform to ADB's terminology.

A 'Good enough guide' to sanitation in the Pacific

On-line training resources as delivered at the Water and WASH Futures Conference

17 February 2023

Trainers

Mark Ellery Bronwyn Powell Tony Falkland

Learning objectives:

- 1. To understand the principles underpinning the dry (aerobic) and wet (anaerobic) processes for the containment and treatment of faecal waste.
- 2. To understand the principles underpinning the design of septic tanks & soakaways, wet & dry pit toilets, septage & sewage treatment plants.

Introduction:	1. Understanding faecal exposure risks	 Principles of septic tanks and soakaways 	3. Principles of pit toilets	4. Principles of septage / sewage treatment systems	
Context: What's unique about Pacific sanitation?	Faecal exposure pathways	Design, operation and maintenance	Wet / anaerobic	Design, operation and maintenance	
Health impacts – chronic and acute	Groundwater safety and setback distances	Common failings	Dry / aerobic	Common failings	

Introduction: Sanitation in the Pacific

Pacific Sanitation Context

Inequities in access between urban and rural populations

1.2m people gained access in last 20 years, but this did not keep up with population growth

Access to at least Basic Urban Sanitation Facilities JMP 2021

Pacific Access to Basic Urban Sanitation Facilities JMP 2021

Faecal Sludge Management vs Sewerage Treatment in the Pacific

(u) Urban data available (n) Only national data available

Source: WHO/UNICEF JMP (2021)

Safely Managed Sanitation Elements

X

SLUDGE DISPOSED OFF-SITE

ON-SITE SANITATION

COLLECTION CONTAINMENT EMPTYING TRANSPORT TREATMENT REUSE/DISPOSAL

DISPOSED ON-SITE

FFFILIENT & SILLDGE

DISPOSED ON-SITE

Introduction: What's unique to the Pacific ?

Pacific Island Countries

Large diversity

- Physical nature of islands (size, shape elevation, geology, etc)
- Climate (especially rainfall very variable in space & time)
- Hydrology & water resources availability
- **Demography** (total population, population density, growth rate, % of urban and rural)
- Culture
- Degree of economic development
- Degree of isolation

Physical characteristics of Pacific Island Countries

Country	Total LandNumber ofArea (km²)islands or atolls		Island type according to geology	
Cook Islands	237	15	Volcanic, limestone, atoll, mixed	
Federated States of Micronesia	701	607	Volcanic, atoll, sand, mixed	
Fiji	18,300	322	Volcanic, limestone, atoll, sand, mixed	
Kiribati	811	33	Atolls & coral islands, one limestone island	
Marshall Islands	181	34	Atolls & coral islands	
Nauru	21	1	Limestone	
Niue	259	1	Limestone	
Palau	444	340	Volcanic, some with limestone	
Papua New Guinea	463,000	Approx. 600	Volcanic, limestone, atoll, sand, mixed	
Samoa	2,930	10	Volcanic	
Solomon Islands	28,200	Approx. 1,000	Volcanic, limestone, atolls	
Tonga	749	171	Volcanic, limestone, sand, mixed	
Tuvalu	26	9	Atolls	
Vanuatu	12,300	83	Volcanic with coastal sands & limestone	

Geology

Examples of Volcanic, Limestone, Coral & Mixed Geology Islands

Population summary for Pacific Island Countries

Country	Population estimates, 2022	Average population density (people/km ²)	Population growth rate (%)	Urban population (%)	Rural population (%)
Cook Islands	15,400	65	0.4%	75%	25%
Federated States of Micronesia	106,000	151	0.2%	22%	78%
Fiji	902,000	49	0.4%	56%	44%
Kiribati	122,700	151	1.7%	53%	47%
Marshall Islands	54,400	301	-0.1%	74%	26%
Nauru	11,900	567	0.8%	100%	0%
Niue	1,530	6	-1.1%	36%	64%
Palau	18,000	41	0.1%	80%	20%
Papua New Guinea	9,310,000	20	2.1%	13%	87%
Samoa	201,000	69	0.6%	19%	81%
Solomon Islands	744,000	26	2.3%	19%	81%
Tonga	99,300	133	-0.3%	23%	77%
Tuvalu	10,800	415	0.9%	63%	37%
Vanuatu	308,000	25	2.2%	25%	75%
Total / Average	11,905,030			21%	79%

Tarawa atoll, Kiribati

High population density on South Tarawa

Main current sources of fresh groundwater for South Tarawa

Groundwater Resources

Groundwater Resources (Limestone island – e.g. raised atoll of Nauru)

Source: Jacobson et al (1992). Geology & Hydrogeology of Nauru Island. in Vacher & Quinn, Geology & Hydrogeology of Carbonate Islands.

Mean annual rainfall at sea level in the Pacific Ocean

- High average annual rainfall in west (up to 5,000mm)
- Low average annual rainfall in equatorial east (as low as 700mm)
- In mountain areas, annual rainfall can be close to 10,000mm

High rainfall variability in some islands e.g. Kiritimati Island, Kiribati

- Annual average rainfall = 924mm
- Highest annual rainfall = approx. 3,700mm,
- Lowest annual rainfall = approx. 180mm
- High & low rainfalls influenced by cycles of El Niño & La Niña episodes

Safely managed sanitation should look like this...

But in reality very often looks like this...

Onsite sanitation systems (dry and low-flush)

Onsite sanitation systems with Faecal Sludge Management and offsite treatment (septic tanks)

Offsite / conventional sewerage with offsite treatment

WHO. (2018). Guidelines on Sanitation and Health . WHO: World Health Organisation.

And has these common problems...

TOILET/

Onsite sanitation systems (dry and low-flush)

Onsite sanitation systems with FSM and offsite treatment (septic tanks)

Offsite / conventional sewerage with offsite treatment

CONVEYANCE TREATMENT

END USE/

What's unique to sanitation in the Pacific?

Context

Culture and history

Sustainability

Challenging environments: - Atolls - High population densities (e.g. South Tarawa, Funafuti, Ebeye) - Peri-urban areas (Port Moresby, Suva, Honiara) - Lack of market access - Commonly a taboo topic

Complex cultural and gendered beliefs affect use and siting

- History of 'handouts' and system failures - Operations and maintenance undersupported

- Few safe disposal options
- Capacity constraints

Common misunderstandings about sanitation in the Pacific

#	Common misunderstandings	Training topic
1	Faecal contamination of groundwater sources is primarily through the groundwater	1
2	Septic tanks significantly reduce the pathogens in faecal sludge and effluent	2
3	Septic tanks with soakaways are always a superior on-site option to cesspits	3
4	There is no problem operating dry pit toilets as wet pits	3
5	Mechanical sewage treatment plants always reduce the faecal exposure risks	4

Topic 1: Understanding Faecal Exposure Risks

"The soil is our friend"

Good Enough Guide to

On-site Sanitation

- **1. Understanding Faecal Exposure Risks**
- 1.1 Implications of faecal exposure
- 1.2 Principles of aerobic & anaerobic digestion processes
- 1.3 Hydro-geological implications of faecal waste disposal

Public Health Acts

3. Pit Toilets	2. Septic	Tanks & Soal	kaways	4. Sewage	e/Septage Systems	5	
3.1 Principles of dry pit toilet	2.1 Principl	es of septics/sc	akaways	4.1 Principle	s of onsite treatment		
- Optimise aerobic processes	- Understar	nding the critica	al role of	- Design & operation of septage			
3.2 Principles of cesspit toilet	soakaway	s in pathogen r	emoval	vs sewage	treatment plants		
- Direct vs offset pit, single vs	- Optimisin	g septic tank/so	bakaway	4.2 Network	ed sewage behaviours	<u>)</u>	
twin pit, pour vs push flush.	design (siz	zing vs risk vs p	orice)	- Managing on-site behaviours for			
				networked	sewage systems		
Local Government Acts	F	Planning Acts		Enviro	onmental Acts		
Home Building Guides	Natio	nal Building	Codes	Wastew	vater Regulations		
Rural Ir	formal	Urban	Comr	mercial	Public		
Local Council By-Laws	Munici	ipal Council E	By-Laws		EIA & EMMP		
•	EIA = EI	nvironmental Impact	Assessment: E	MMP = Environm	ental Monitoring and Managem	ent Plan	

Strong Correlation (OD Density $\Psi \approx$ Stunting Ψ)

Increased mortality risk

•

Open Defecation Density (log₁₀ open defecators per km²)

Men have Grown Taller with Sanitary Improvements

Sewage Treatment Processes

Faecal waste (solids & liquid) can be treated by anaerobic (no air) + aerobic (with air) processes:

- Anaerobic digestion: is more efficient in reducing the volume of solids (i.e. BoD & CoD)
 → Environmental Health
- Aerobic digestion: is more efficient in reducing pathogens (i.e. bacteria, viruses & parasites)
 → Public Health

Vertical Minimum Safe Distance (MSD)

Adsorption 0.3 m

🖈 Filtration 0.3 m 🏷

Aerobic 0.3 m

Biofilm

MSD >2 m

Pathogen attenuation improves in the 1st month with the establishment of the biofilm, optimising after 1 year

Environmental risk >> Health risk

The **<u>survival time</u>** of pathogens decreases:

- at higher ambient temperatures
- in drier soil with higher moisture holding capacity
- closer to the soil surface (more sun/air/evaporation)
- in soil rich in microflora but low in soluble organics

>99.99% attenuation Filtration: by soil limits <u>parasite</u> (protozoa & helminths) transit due to their relatively large size

Aerobic organisms: in the soil just beyond the biofilm limit the transit of faecal *bacteria*

Adsorption: to the surface of the soil (esp. clay) limits <u>virus</u> transit Source: Lewis WJ (1980)

Source: Pathogen survival times in wet faecal sludge, IWMI & SANDEC (2002)

Pathogens

The migration of pathogens decreases:
in a saline environment

- in drier unsaturated soil
- in finer & more clay soil
- at lower hydraulic loading rates

Horizontal Minimum Safe Distance (MSD) Pathogen attenuation improves in Soakaway or the 1st month with the establishment Wet Pits of the biofilm, optimising after 1 year 0.3 m Bacteria transit survival time = 4-7 days (aerobic - anaerobic) Virus transit survival time <10 days **Biofilm** Adsorption Filtration Pathogens Assumptions Parasites (>10 um) <1 year @ 20-30°C Pathogen survival time (Transit << Static, Aerobic << Anaerobic)</p> - Hydraulic gradient (Topographical >>Anthropogenic >> Tidal) Groundwater velocity (Horizontal >> Vertical) MSD >15 m Bacteria (≈1 um) 2 month @ 20-30°C The setback distance (D) against a specified travel time (t) is:

<u>Virus (<0.1 um)</u> 20 days @ 20-30°C

Source: Pathogen survival times in wet

faecal sludge, IWMI & SANDEC (2002)

 $D = time * Velocity = \frac{t * K * i}{r}$

 n_{ρ} = the effective porosity of the aquifer (as a fraction).

K = horizontal saturated hydraulic conductivity of the aquifer

i = groundwater gradient (as a fraction)

Source: WC Cromer et. al. (2001)

Tony please

V = 1.5 m/day

help?

Groundwater profiles & velocities in the Pacific

<u>Example</u> Bonriki island, Tarawa atoll, Kiribati

- Bonriki island & nearby Buota island are the main current sources of fresh groundwater for South Tarawa.
- Groundwater is pumped from freshwater lenses on these islands using infiltration galleries
- Groundwater is also extracted from village wells on the edge of the islands

Bonriki island water reserve and village areas

Village areas around the edges of Bonriki have on-site sanitation

Gallery pump stations & pipes, Bonriki

Bonriki island showing cross section through water reserve and village areas

- Distance across island at cross section = 900m
- Maximum measured height of groundwater level above mean sea level = 0.8m at 400m from lagoon side

Cross Section through Bonriki Freshwater Lens

Maximum

sea level

Calculation of horizontal & vertical groundwater velocities for Bonriki

Calcula	tion of	horizon	tal and	vertica	l veloci	ities for	Bonriki	. Tarav	va. Kirit	oati					
eurouru				Vertied				, rarar		Juli					
1. Avera	age hor	izontal [•]	velocity	from i	near ce	ntre of f	freshwa	ter lens	s to edg	e of isl	and (V _h) = (k *	i) / n _e		
where															
	k (hydra	ulic cond	uctivity or	⁻ permea	bility) = 5	<mark>m/day</mark> (from bore	hole mea	suremen	its)					
	i (hydra	ulic gradie	ent) = hei	ght of gr	oundwate	er above i	mean sea	level / d	istance fr	om lagoo	on = 0.8 /	400 = 0 .	002		
	n _e (effec	tive poros	sity) = po	rtion of to	otal void s	space in a	a porous i	material (e.g. aqui	fer) that	can trans	mit fluid :	= 0.3		
therefore	V _h = 33	mm/day													
Results ι	using thi	s velocit	у												
	Distance	e travelled	d in 10 da	ys (prob	able Viru	s transit s	survival tin	ne)= <mark>0.3</mark>	33 m						
	Time tak	en to tra	/el 15m ('	'Minimun	n Safe Di	stance") :	= 1.2 yea	rs							
	Time tak	en to trav	/el 400m	(edge of	lagoon)	= 33 year	S								
2. Avera	age ver	tical vel	ocity fr	om sur	face to	base of	f freshw	ater lei	ns (V _v) :	= avera	ge groເ	Indwate	er recha	arge rate	
where	average	recharge	e = appro	oximately	0.4 x av	erage anr	nual rainfa	all (2,000	mm) = 80	00mm/ye	ar = <mark>2.2m</mark>	nm/day			
therefore	$V_v = 2.2$	2 mm/day													
Results ι	using thi	s velocit	y												
	Time tak	en to trav	el to the	base of t	freshwate	er lens wit	th average	e thickne	ss of 10m	n and eff	ective por	rosity of 0	.3 = app	rox. 4 years.	
	Hence, a	a molecul	e of wate	r is more	likelv to	mix with	saline wa	ter in a ve	ertical dire	ection the	an a horiz	zontal dire	ection		

Influences on groundwater level in small coral island e.g. Bonriki

(a) Natural influences

- Due to sea level movements (mainly tides): 100 150mm (twice daily highs & lows, approx. 5-10% of sea level movements)
- Due to short term extreme rainfall: up to 1m (influence over several days)

 Due to longer-term rainfall changes during El Niño – La Nina cycles: 300 – 500mm (influence over several years)

(b) Anthropogenic influences

- Drawdown due to pumping from infiltration galleries (water reserve): 10 50mm (continuous, minor compared with other influences)
- Drawdown due to pumping from wells (village areas): variable, can be up to 500mm (intermittent, can be significant depending on capacity of pump)

Groundwater Pumping Systems – Anthropogenic Influences (on small coral islands and coastal zones of high islands)

- **Dug wells** (if pumped, the groundwater drawdown can cause movement of contaminants towards the well and seawater intrusion from below)
- Boreholes (can cause significant seawater intrusion and are not recommended for small coral islands)
- Infiltration galleries (cause very small groundwater drawdowns and hence have insignificant impact on movement of contaminants and seawater intrusion)

Misunderstanding #1: Faecal contamination of groundwater sources is primarily via the groundwater

Source: Ravenscroft P. et. al. (2017) Water Research https://www.sciencedirect.com/science/article/abs/pii/S004313541730622X

We still have many questions:

- What are the lateral groundwater velocities in different contexts?
- What is the transit survival time of pathogens in different soil conditions in the Pacific?
- How does the biofilm behave when pits are saline / flooded / shock loaded?

What about you?

Topic 2: Principles of Septic Tanks & Soakaways

"soakaway design is most important"

Good Enough Guide to

On-site Sanitation

1. Understanding Faecal Exposure Risks

- 1.1 Implications of faecal exposure
- 1.2 Principles of aerobic & anaerobic digestion processes
- 1.3 Hydro-geological implications of faecal waste disposal

Public Health Acts

3. Pit Toilets	2. Septic Tanks & Soakaways	4. Sewage/Septage Systems
3.1 Principles of dry pit toilets	2.1 Principles of septics/soakaways	4.1 Principles of onsite treatment
- Optimise aerobic processes	- Understanding the critical role of	- Design & operation of septage
3.2 Principles of cesspit toilets	soakaways in pathogen removal	vs sewage treatment plants
- Direct vs offset pit, single vs	- Optimising septic tank/soakaway	4.2 Networked sewage behaviours
twin pit, pour vs push flush.	design (sizing vs risk vs price)	- Managing on-site behaviours for
		networked sewage systems
Local Government Acts	Planning Acts	Environmental Acts
Home Building Guides	National Building Codes	Wastewater Regulations
Rural Info	rmal Urban Com	mercial Public
Local Council By-Laws	Municipal Council By-Laws	EIA & EMMP
•	EIA = Environmental Impact Assessment;	EMMP = Environmental Monitoring and Managemen

Plan

Misunderstanding #2: Septic tanks significantly reduce pathogen concentrations

Septic Tank Design / Sizing to AS 1547-2012

D

Based on a wastewater retention time of 24 hrs

Volume = Accumulation of Liquids + Solids + Free

Liquid Accumulation = # people * litres per capita per day Solid Accumulation = # people * litres per capita per year * # years between desludge

Freeboard = 10% of tank volume

For 96% MC, then AS/NZS 1547 implies 6-10 years fill-time

	1,500 litre tank for blackwater
/	from a nousehold of 5 people
	3,000 litre tank for blackwater from a household of 10 people
	or black+grey water of 5 people
1	

4,500 litre tank for black+grey water from a HH of 10 people

Sizing based on septic tank emptying every 3-5 years

RETENTION TIME	Effluent (lpcd)	People (#)	Liquid (litres)	Sludge (Ipcy)	Empty (years)	Solids (litres)	Free (litres)	Total (litres)
Pour Flush	30	5	150	50	5	1250	140	1,540
Toilet	30	10	300	50	5	2500	280	3,080
Push Flush	50	5	250	50	4	1000	125	1,375
Toilet	50	10	500	50	4	2000	250	2,750
Black & Grey	150	5	750	80	5	2000	275	3,025
Water	150	10	1500	80	3	2400	390	4,290

Why are Faecal Sludge Accumulation Rates Important?

Honiara City (Faecal Sludge @ 96% MC)

We know that there are **11 septage trucks** BUT we have no estimates of septage disposal!

The city has a population of 42,000 people with 23% connected to sewerage, 43% on septic tanks and 13% on offset pit toilets.

- Sludge generation = 100,000 * ((13% * 20 l/cap/yr) + (43% * 40 l/cap/yr)) / 1000 = 2,045 m3/year
- # trucks req'd = 2,045 m3/year / 52 wks per yr / 5 days per week / 3 loads per day / 3 cubic metres per load = 1 septage truck

Conclusion: The sludge trucks are primarily transporting effluent (with some sludge) without any significant reduction of pathogens.

Potential Cause: The dense silty soil does not have the capacity to absorb all of the grey + black water.

Investigation: Is blackwater plumbing separate from grey water? Can the sizing of soakaways be increased?

Dhaka City (Faecal Sludge @96% MC)

We know there are **<2 septage trucks** BUT we have no estimates of septage disposal!

The city has a population of 9 million people with 25% connected to sewerage, 50% on septic tanks and 25% on offset pit toilets

- Sludge generation = 9,000,000 * ((25% * 20 l/cap/yr) + (50% * 40 l/cap/yr)) / 1000 = 236,250 m3/year
- # trucks req'd = 236,250 m3/year / 52 wks per yr / 5 days per week / 3 loads per day / 3 cubic metres per load = 101 septage trucks

Conclusion: All the septic sludge from non-sewered areas is either piped, pumped or manually emptied into the stormwater drains.

Potential Cause: The dense silty soil does not have the capacity to absorb all of the grey + black water.

Investigation: Can the stormwater be treated prior to the discharge into the waterways?

Soakaway Design & Sizing Approaches

Biomat LTAR approaches a constant @1-10 mm/day. Allowing for exfiltration, the AS 1547 DLR ranges from 4-8 mm/day for silty soil (safe-max) to 20-35 mm/day for sandy gravel (safe-max).

RESULT = Very long trenches or lots of pits (depth is irrelevant)

Sizing on exfiltration only, the BS/IS ranges from 10 mm/day for silty soil to 100 mm/day for sandy gravel, BUT in porous soil the sizing is generally defined by <50 mm/day infiltration zone

RESULT = Shorter trenches (but DLR <50 mm/day defines the sizing of trenches in sandy soil or the number of pits)

Optimising these two approaches when the use of groundwater for drinking is low

We still have many questions:

- What is the GHG reduction from venting methane through the soakaway?
- When do septic tanks need a vent pipe?
- What are the consequences of increased sludge density in septic tanks?
- How do we optimize the sizing of soakaways in the Pacific?
- What are the opportunities of separate blackwater & greywater plumbing?

But what about you?

Topic 3: Principles of Pit Toilets

"knowing where aerobic processes are occuring"

Good Enough Guide to

On-site Sanitation

- **1. Understanding Faecal Exposure Risks**
- 1.1 Implications of faecal exposure
- 1.2 Principles of aerobic & anaerobic digestion processes
- 1.3 Hydro-geological implications of faecal waste disposal

Public Health Acts

3. Pit Toilets	2. Septic Tanks & Soakaways	4. Sewage/Septage Systems
3.1 Principles of dry pit toilets	2.1 Principles of septics/soakaways	4.1 Principles of onsite treatment
- Optimise aerobic processes	- Understanding the critical role of	- Design & operation of septage
3.2 Principles of cesspit toilets	soakaways in pathogen removal	vs sewage treatment plants
- Direct vs offset pit, single vs	- Optimising septic tank/soakaway	4.2 Networked sewage behaviours
twin pit, pour vs push flush.	design (sizing vs risk vs price)	- Managing on-site behaviours for
)	networked sewage systems
Local Government Acts	Planning Acts	Environmental Acts
Home Building Guides	National Building Codes	Wastewater Regulations
Rural Info	rmal Urban Com	mercial Public
Local Council By-Laws	Municipal Council By-Laws	EIA & EMMP
-	EIA = Environmental Impact Assessment; E	MMP = Environmental Monitoring and Management

Plan

Two Different Biological Treatment Processes

Faecal waste is digested naturally by aerobic (with air) & anaerobic (without air) processes

Faecal sludge also needs to be exposed to aerobic processes

Dry faecal sludge is concentrated. Can disable treatment plants

Optimizing Dry Pit Toilet Operation & Maintenance

Optimizing Wet Pit Toilet Operation & Maintenance

1. What is a cesspit?

A cesspit is a combined septic tank & soakaway BUT cesspits:

- do not always operate full
- cannot accommodate fats, oils & grease

Cesspits MUST be 'blackwater' only

2. What happens if cesspits fill prematurely?

The effluent absorption area can be increased by placing rocks around the pit. The effluent absorption area & sludge holding capacity can be increased by adding more pits in series.

3. How can cesspits be emptied?

Adding a second pit in parallel enables 'the duty' pit to be taken 'offline' to rest for at least a year before being emptied

4. Why do cesspits fill so slowly?

The moisture content of sludge in efficient cesspits is 80% (20% solids), while the moisture content of sludge in septic tanks is 98% (2% solids).

• Cesspits will take 10 times longer to fill than a septic of a given volume

Misunderstanding #3: Septic tanks are always superior to Cesspits

Offset Cesspit Toilet

Advantages of Cesspits

- Septic tank sludge fill rates (50-80 lpcy @ 98% moisture content) are ≈10 times faster than cesspit fill rates (5 lpcy @ 80% moisture)
- Modular cesspits with an expanded effluent absorption area can be adapted to suit most soil conditions
- Cesspits offer multiple options for resting, switching or emptying when they fill-up, as compared to septic tanks that must be pumped out
- Cesspits are therefore ≈10 times cheaper than septic tanks with soakaways to install and maintain

Advantages of Septic Tanks & soakaways

- Septic tanks can treat all wastewater, as compared to cesspits that cannot accommodate grey wastewater (fats, oil and grease)
- Septic tanks contain nutrients in the sludge & effluent to potentially be removed, as compared to cesspits that will leach nutrients
- Septic tanks enable the effluent treatment mechanism to be designed and sized to suit the requirements for pathogen and/or nutrient removal, as compared to cesspits where the sludge storage volume tends to define the effluent infiltration area / type

Faecal sludge also needs to be exposed to aerobic processes 🖌 Aerobic

Dry faecal sludge is concentrated. Can disable treatment plants

We still have many questions:

- What are the implications (risks) of running dry pit toilets in an anaerobic state?
- Is the SaTo pan a dry or a wet pit option?
- Can waterseal toilets be designed to function when the cesspit/septic is submerged?
- What are the factors that affect the assumed faecal sludge densities in
 - dry pits (i.e. 40% solids)
 - cess pits (i.e. 20% solids)
 - septic tanks (i.e. 2-4% solids)

What about you?

Topic 4: Principles of septage / sewage treatment plants

"Rewards vs risks of complex technologies"

Good Enough Guide to

On-site Sanitation

1. Understanding Faecal Exposure Risks

- 1.1 Implications of faecal exposure
- 1.2 Principles of aerobic & anaerobic digestion processes
- 1.3 Hydro-geological implications of faecal waste disposal

Public Health Acts

3. Pit Toilets	2. Septi	ic Tanks & Soa	akaways	4. Sewage/Septage System				
3.1 Principles of dry pit toile	ets 2.1 Princ	iples of septics/s	soakaways	4.1 Principles of onsite treatment				
- Optimise aerobic processe	es - Underst	tanding the critic	cal role of	- Design & o	peration of septage			
3.2 Principles of cesspit toil	ets soakaw	ays in pathogen	removal	vs sewage t	reatment plants			
- Direct vs offset pit, single	vs <mark>- Optimis</mark>	sing septic tank/	soakaway	4.2 Network	ed sewage behaviours	4		
twin pit, pour vs push flus	h. design	design (sizing vs risk vs price)		- Managing on-site behaviours for				
				networked	sewage systems			
Local Government Ac	ts	Planning Act	.s	Enviro	onmental Acts			
Home Building Guide	s Nat	ional Building	g Codes	Wastew	ater Regulations			
Rural	Informal	Urban	Com	mercial	Public			
Local Council By-Laws	Mun	icipal Council	By-Laws		EIA & EMMP			
,	EIA	= Environmental Impac	t Assessment: E	MMP = Environme	ental Monitoring and Managem	ent Plan		

Passive Septage Treatment Plants

Septage plant treatment options are primarily driven by choices in the management of nutrient risks

2) Nitrogen concentrated in the sludge

1) Nitrogen leaches to the environment

Unlined Pits

Pathogens attenuated below pits BUT nitrogen will leach through the soil

Sizing (=smallish)

- Pit volume to hold dry sludge (60% moisture)
- Pit area sized to facilitate effluent leaching
- Pits designed to limit moisture ingress

Maintenance (= minimal)

- Mound ground over the pits when full

Feasibility

- When septage tanker trucks are bringing sludge from toilets with well functioning soakaways (i.e. moisture content <96%)
- Where the nutrient risks are low (or carbon exists in an anoxic zone below the pit)

O OO O OO Cverflow Soakage Lined Ponds Vutrients & pathogens concentrated in sludge

Sizing (=large)

Pond volume sized to hold wet sludge (95% moisture) & soakaway to dissipate excess liquid
Efficiently deployed in low rainfall areas or fitted with covers in high rainfall areas

Maintenance (=medium)

- Rest ponds when full ... dig-out sludge, turn into the soil and wait before re-using.

Feasibility

- When there is demand for septage sludge as a 'nutrient rich' soil conditioner.
- Where the nutrient risks are moderate

3) Nitrogen concentrated in the effluent

Sizing (=medium)

Vessel sized to hold moist sludge (80% moisture) & soakaway to dissipate all liquid
Vessel could also be an Imhoff tank or anaerobic baffled reactor or similar

Maintenance (=high)

- Dig out sludge when full & turn into soil
- Gravel in reed beds needs to be replaced

Feasibility

- When moisture ingress is likely to be high
- When the nutrient contamination risks to the environment are considered to be high

Package Sewage Treatment Plants On-site STPs

1) With an effluent soakaway

Failure risk is on overflow to surface

Test effluent

Both performance & failure risks are

transferred to open (water or land)!

🕻 🌾 plant uptake

There are numerous package STPs on the market deploying an activated sludge treatment process BUT the regulatory requirements depending on whether or not they are fitted:

1) STP discharges effluent to a soakaway = lower performance <u>yet</u> **lower failure risks** The lower BoD and TSS of effluent results in a thinner bio-mat with greater pathogen attenuation capacity. Nitrogen removal can be facilitated by plant uptake or a carbon source in the soakaway. *NB: Although effluent testing is NOT required, routine maintenance & emptying is necessary*

In order to achieve the required pathogen concentration levels, the activated sludge process must be followed by filtration and disinfection prior to the release to open. Nitrogen can also be removed by an effluent return to facilitate exposure to naturally occurring carbon in the sewage. *NB: Routine testing, maintenance & emptying is necessary to manage the risks of failure*

Sewerage (on-site behaviours)

Minimizing the ingress of water and non-biodegradable materials will improve the efficiency and reduce the costs of the collection, transfer and treatment of wastewater. Improving residential and commercial user behaviour can improve the performance of the sewerage system.

- Educate households to dispose of oil/grease with their solid waste
- Install grease traps in all commercial food processing industries
- Introduce the recycling of food oil as bio-diesel

2. Prevent Non-Biodegradable Waste Entering Sewers

Foreign materials that enter sewers during construction, operation and maintenance can cause equipment failures. Educate households NOT to flush condoms, cotton buds, tampons, menstrual pads, wet wipes, nappies, dental floss

- Train builders to seal sewerage pipes during maintenance to limit the entry of sand, thread tape, pipe caps, building waste, tree roots
- Educate street sweeper & septage truck operators NOT to sweep sand or dump foreign objects into sewers

3. Reduce water percentage in the sewerage system

The transfer and treatment of sewage can be improved by reducing the percentage of clean water in the sewerage.

- Educate all users to eliminate rain/storm water from sewers
- Incentivise all consumers to reduce water wastage
- Eliminate crossovers between sewerage and stormwater systems

4. Reduce contaminants entering the sewers

A sewerage system cannot manage all wastewater.

- Educate all users to minimise solid/chemical discharges to sewers
- Require all commercial users to obtain a 'trade waste permit'
- Require the pre-treatment or prohibit the discharge of some wastewater to sewers

We still have many questions:

- Is nitrogen density loading the key trigger to move away from soil-based systems?
- Is it worth monitoring the quality of effluent discharged from STPs to soakaways?
- What are the relative inundation risks of onsite sanitation vs networked options

What about you?

ADB Technical Assistance Strengthening WASH in the Pacific

Lessons

#	Common misunderstandings	Lesson
1	Faecal contamination of groundwater sources is primarily through the ground	Faecal contamination of groundwater sources is primarily via the surface
2	Septic tanks significantly reduce the pathogens in faecal sludge and effluent	Most of the pathogens are neutralized in the soil underneath the soakaway (aerobic digestion)
3	Septic tanks with soakaways are always a superior on-site option to cesspits	Cesspits offer a superior service to septic tanks with soakaways for many 'blackwater only' uses
4	There is no problem operating dry pit toilets as wet pits	Running dry pit toilets in a wet state is sub- optimal in reducing smell, emissions & pathogen removal.
5	Mechanical sewage treatment plants always reduce the faecal exposure risks	Mechanical sewage treatment plants often carry higher risks of failure

Malo! Vinaka! Thank you!

Please complete the feedback form

