This is not an ADB material. The views expressed in this document are the views of the author/s and/or their organizations and do not necessarily reflect the views or policies of the Asian Development Bank, or its Board of Governors, or the governments they represent. ADB does not guarantee the accuracy and/or completeness of the material's contents, and accepts no responsibility for any direct or indirect consequence of their use or reliance, whether wholly or partially. Please feel free to contact the authors directly should you have queries.

Asia Water Forum 2022 8–11 August 2022 • Online

Focus Area: Climate change and water-related risks

Session Title: Understanding, managing and communicating risks

Schedule: 9 August 2022 | 3:00pm - 4:30pm

Understanding the links between drought indices and drought impacts to improve drought resilience in Thailand

Michael Eastman¹, Supatrra Visseri², Chaiwat Ekkawatpanit³, Liwa Pardthaisong⁴, Simon Parry¹, Lucy Barker¹, Jamie Hannaford¹, Maliko Tanguy¹, Eugene Magee¹, Ian Holman⁵, Lola Rey⁵, Daniel Goodwin⁵

การพัฒนาศักยภาพ ของประเทศไทย ต่อการรู้รับ ปรับตัว และพื้นคืนกลับ จากภัยแล้งด้านการเกษตร

Drought in Thailand

Occur in all climatic zones

Are complex, compound events (Van Loon et al., 2015)

Projected to increase in frequency and severity due to climate change

Are one of the most costly natural hazards

FILE - A family prays near the ruins of a headless Buddha statue, which has resurfaced in a dried-up dam due to drought, in Lopburi, Thailand, Aug. 1, 2019.

Strengthening Thailand's Agricultural drought Resilience (STAR)

- Monitoring and early warning is crucial to integrated drought management and building resilience
- STAR aims to improve the resilience to agricultural droughts in Thailand by understanding the links between drought impacts and drought indicators

This presentation will look at the links meteorological drought indices and drought impact data

STAR Focus group and interviews with farmers in the Ping catchment, NW Thailand (2019, 2020)

Strenthening Thailand's Agricultural drought Resilience

ารพัฒนาศักยภาพ ของประเทศไทย ต่อการรู้รับ ปรับตัว และพื้นคืนกลับ จากภัยแล้งด้านการเกษตร

Strenthening Thailand's Agricultural drought Resilience

Analysis of drought indicators vs. impacts

Standardised meteorological drought indicators often used in operational drought monitoring and early warning systems

 \rightarrow But how do they relate to actual impacts on the ground?

SPI = Standardised Precipitation Index

SPEI = Standardised Precipitation-Evaporation Index

CORRELATION ANALYSIS

- Using remote sensing vegetation indicators (VIs) as "proxy" for drought impacts
- Meteorological indicators (SPI, SPEI) vs. VIs per province for wet and dry season

RANDOM FOREST MODELS

- One model per crop and per region
- Analysis of feature importance

การพัฒนาศักยภาพ ของประเทศไทย ต่อการรู้รับ ปรับตัว และพื้นคืนกลับ จากภัยแล้งด้านการเกษตร

Thailand's Agricultural drought Resilience

Correlation Analysis: VIs vs. Crop Yield

VIs = Vegetation Indices VCI = Vegetation Condition Index VHI = Vegetation Health Index **SPI** = Standardised Precipitation Index **SPEI** = Standardised Precipitation-Evaporation Index

ADB

⁽⁾ Met. indicator vs. VIs: DRY SEASON

ADB

VIs = Vegetation Indices **VCI** = Vegetation Condition Index **VHI** = Vegetation Health Index **SPI** = Standardised Precipitation Index **SPEI** = Standardised Precipitation-Evaporation Index

⁽⁾ Met. indicator vs. VIs: WET SEASON

VIs = Vegetation Indices VCI = Vegetation Condition Index VHI = Vegetation Health Index SPI = Standardised Precipitation Index SPEI = Standardised Precipitation-Evaporation Index

D

F

การพัฒนาศักยภาพ ของประเทศไทย ต่อการรู้รับ ปรับตัว และพื้นคืนกลับ จากภัยแล้งด้านการเกษตร

В

Ε

Random Forest Models Random **Forest** Drought Crop С indicators productivity Paddy rice SPI • SPEI Cassava Maize VCI • TCI Longan ٠ kg/rai

1-12, 24 month All starting months

ADB

VCI = Vegetation Condition Index VHI = Vegetation Health Index TCI = Temperature Condition Index SPI = Standardised Precipitation Index SPEI = Standardised Precipitation-Evaporation Index

การพัฒนาศักยภาพ ของประเทศไทย ต่อการรู้รับ ปรับตัว และพื้นคืนกลับ จากภัยแล้งด้านการเกษตร

Random Forest: Results

ADB

Feature importance: example of Cassava

SIAK Agricultural drought Resilience

Strenthening Thailand's

การพัฒนาศักยภาพ ของประเทศไทย ต่อการรู้รับ ปรับตัว และพื้นคืนกลับ จากภัยแล้งด้านการเกษตร

ADB

Conclusions & Next Steps

Conclusions:

- Spatio-temporal differences in relationships between drought indicators and impacts
- Meteorological indicators are a useful tool for drought monitoring once these relationships are better understood

Next steps:

- Produce summaries of findings and recommendations for stakeholders
- Carry out similar analysis in other SE Asia countries (e.g. Malaysia)
- Define drought indicator thresholds below which the likelihood of impacts is increased

ADB

This work is an outcome of STAR ('Strengthening Thailand's Agricultural drought Resilience') and has been funded by the Newton Fund, the Natural Environment Research Council, the Economic and Social Research Council and Thailand Science Research and Innovation