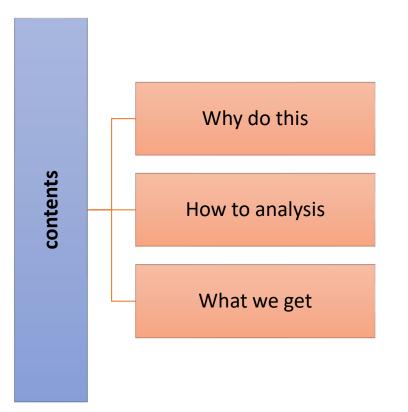
This is not an ADB material. The views expressed in this document are the views of the author/s and/or their organizations and do not necessarily reflect the views or policies of the Asian Development Bank, or its Board of Governors, or the governments they represent. ADB does not guarantee the accuracy and/or completeness of the material's contents, and accepts no responsibility for any direct or indirect consequence of their use or reliance, whether wholly or partially. Please feel free to contact the authors directly should you have queries.

Asia	Water Forum 2022
	8–11 August 2022 • Online

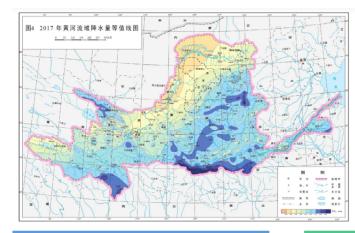
Focus Area: <u>Water as a sustainable resource</u> Session Title: Decision support for efficient water utilization

Schedule: [Date | Time]: 9 August 2022 (Tue), 11:00 a.m. - 12:30 p.m. (GMT+08)


Analysis of the water resources utilization in the Yellow River Basin based on water

resources ecological footprint model

Lu Rui



Why do this

The Yellow River basin locates in the northern China. And in general, it is lack of water and has sharp contradiction between water supply and demand.

- Mother River
- Sharp Contradiction between Water Supply and
 - Demand (2%,12%,15%,14%,25%)
- uneven distribution of water resources
- different levels of socioeconomic development

Total amount of water resources

- 64.70 billion cubic meters
- 2% of China's total

Water resources per capita

- 530.8 cubic meters
- 26% of China's average

Water resources per drainage area

- 90,000 cubic meters
- 1/3 of China's average

How to analysis

$$EF_{w} = EF_{CS} + EF_{IP} + EF_{LE} + EF_{EC}$$

$$= [\sum_{j} Q_{j} \times [(10 \cdot K_{j} \cdot ET_{0}) / Y_{j}] + \sum_{j} O_{j} \times$$

$$= [\sum_{j} Q_{j} \times [(10 \cdot K_{j} \cdot ET_{0}) / Y_{j}] + \sum_{j} O_{j} \times$$

$$= [\sum_{j} Q_{j} \times [(10 \cdot K_{j} \cdot ET_{0}) / Y_{j}] + \sum_{j} O_{j} \times$$

$$= [\sum_{j} Q_{j} \times [(10 \cdot K_{j} \cdot ET_{0}) / Y_{j}] + \sum_{j} O_{j} \times$$

$$= [\sum_{j} Q_{j} \times [(10 \cdot K_{j} \cdot ET_{0}) / Y_{j}] + \sum_{j} O_{j} \times$$

$$= [\sum_{j} Q_{j} \times [(10 \cdot K_{j} \cdot ET_{0}) / Y_{j}] + \sum_{j} O_{j} \times$$

$$= [\sum_{j} Q_{j} \times [(10 \cdot K_{j} \cdot ET_{0}) / Y_{j}] + \sum_{j} O_{j} \times$$

$$= [\sum_{j} Q_{j} \times [(10 \cdot K_{j} \cdot ET_{0}) / Y_{j}] + \sum_{j} O_{j} \times$$

$$= [\sum_{j} Q_{j} \times [(10 \cdot K_{j} \cdot ET_{0}) / Y_{j}] + \sum_{j} O_{j} \times$$

$$= [\sum_{j} Q_{j} \times [(10 \cdot K_{j} \cdot ET_{0}) / Y_{j}] + \sum_{j} O_{j} \times$$

$$= [\sum_{j} Q_{j} \times [(10 \cdot K_{j} \cdot ET_{0}) / Y_{j}] + \sum_{j} O_{j} \times$$

$$= [\sum_{j} Q_{j} \times [(10 \cdot K_{j} \cdot ET_{0}) / Y_{j}] + \sum_{j} O_{j} \times$$

$$= [\sum_{j} Q_{j} \times [(10 \cdot K_{j} \cdot ET_{0}) / Y_{j}] + \sum_{j} O_{j} \times$$

$$= [\sum_{j} Q_{j} \times [(10 \cdot K_{j} \cdot ET_{0}) / Y_{j}] + \sum_{j} O_{j} \times$$

$$= [\sum_{j} Q_{j} \times [(10 \cdot K_{j} \cdot ET_{0}) / Y_{j}] + \sum_{j} O_{j} \times$$

$$= [\sum_{j} Q_{j} \times [(10 \cdot K_{j} \cdot ET_{0}) / Y_{j}] + \sum_{j} O_{j} \times$$

$$= [\sum_{j} Q_{j} \times [(10 \cdot K_{j} - ET_{0}) / Y_{j}] + \sum_{j} O_{j} \times$$

$$= [\sum_{j} Q_{j} \times [(10 \cdot K_{j} - ET_{0}) / Y_{j}] + \sum_{j} O_{j} \times$$

$$= [\sum_{j} Q_{j} \times [(10 \cdot K_{j} - ET_{0}) / Y_{j}] + \sum_{j} O_{j} \times$$

$$= [\sum_{j} Q_{j} \times [(10 \cdot K_{j} - ET_{0}) / Y_{j}] + \sum_{j} O_{j} \times$$

$$= [\sum_{j} Q_{j} \times [(10 \cdot K_{j} - ET_{0}) / Y_{j}] + \sum_{j} O_{j} \times$$

$$= [\sum_{j} Q_{j} \times [(10 \cdot K_{j} - ET_{0}) / Y_{j}] + \sum_{j} O_{j} \times$$

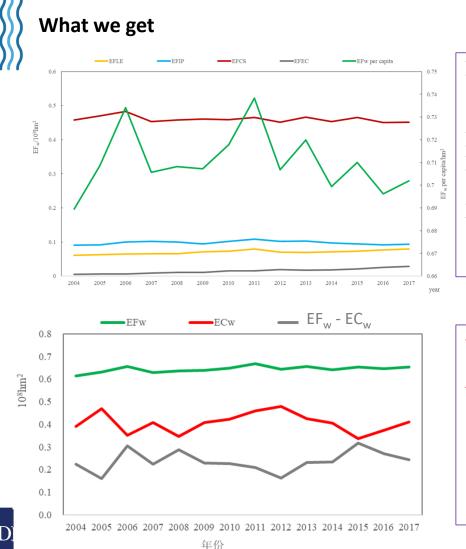
$$= [\sum_{j} Q_{j} \times [(10 \cdot K_{j} - ET_{0}) / Y_{j}] + \sum_{j} O_{j} \times$$

$$= [\sum_{j} Q_{j} \times [(10 \cdot K_{j} - ET_{0}) / Y_{j}] + \sum_{j} O_{j} \times$$

$$= [\sum_{j} Q_{j} \times [(10 \cdot K_{j} - ET_{0}) / Y_{j}] + \sum_{j} O_{j} \times$$

$$= [\sum_{j} Q_{j} \times [(10 \cdot K_{j} - ET_{0}) / Y_{j}] + \sum_{j} O_{j} \times$$

$$= [\sum_{j} Q_{j} \times [(10 \cdot K_{j} - ET_{0}) / Y_{j}] + \sum_{j} O_{j} \times$$


$$= [\sum_{j} Q_{j} \times [(10 \cdot K_{j} - ET_{0}) / Y_{j}] + \sum_{j} O_{j} \times$$

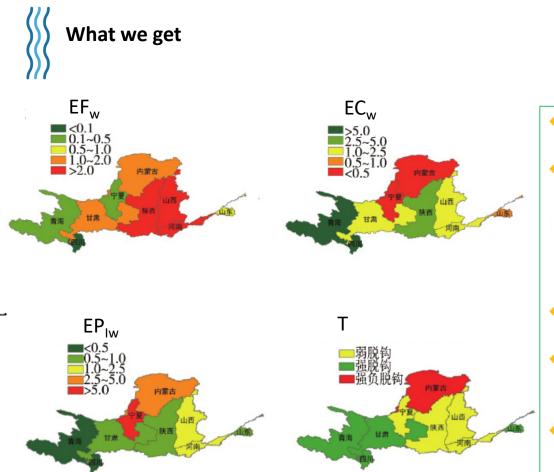
$$= [\sum_{j} Q_{j} \times [(10 \cdot K_{j} - ET_{0}) / Y_{j}] + \sum_{j} O_{j} \times$$

$$= [\sum_{j} Q_{j} \times [(10 \cdot K_{j} - ET_$$

 EF_w : water resource ecological footprint $EF_{CS:}$ Water Ecological Footprint of Agriculture (including Planting and Livestock and Poultry Breeding) $EF_{IP:}$ Industrial Water Ecological Footprint $EF_{LE:}$ Living Water Ecological Footprint $EF_{EC:}$ Ecological Water Ecological Footprint EC_w : water ecological carrying capacity $EP_{IW:}$ water resources ecological stress index T:Decoupling Index, to evaluate the degree of decoupling between the water resource ecological footprint and economic development

strong negative decoupling	Expansive negative decoupling	transition weak negative decoupling	weak decoupling	strong decoupling	recessionary decoupling	Transition strong negative decoupling	strong negative decoupling
$\Delta EF_W > 0$	$\Delta EF_W > 0$	$\Delta EF_W > 0$	ΔEF_W >0	$\Delta EF_W < 0$	$\Delta EF_W < 0$	$\Delta EF_W < 0$	$\Delta EF_W < 0$
∆ <i>GDP</i> <0	$\Delta GDP > 0$	$\Delta GDP > 0$	$\Delta GDP > 0$	$\Delta GDP > 0$	$\Delta GDP < 0$	$\Delta GDP < 0$	$\Delta GDP < 0$
T<0	T>1.2	1≤T≤1.2	0≤T < 1	T<0	T>1.2	1≤T≤1.2	0≤T < 1

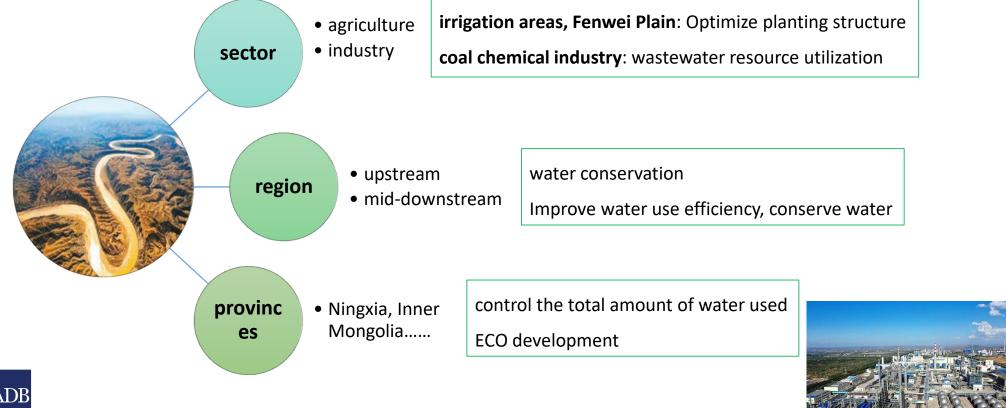
- EFw shows a fluctuating upward trend, indicating that with the development of society and economy, the total consumption of water resources increasing.
- EF_{cs} dominates(67.5% ~ 74.5%).
- EF_{EC} increased fastest, reflecting more and more attention to ecological environmental protection.
- After 2012, EF_{IP} showed a slow decrease trend, indicating that the industry has gradually shifted from extensive growth to efficient and intensive.
- EC_w is significantly smaller than EF_w, and it has been in a state of ecological deficit for a long time.
- After 2015, with the implementation of the "Water Pollution Prevention and Control Action Plan", the water environment, water resources and water ecological conditions of the Yellow River Basin have been greatly improved, <u>EC_W</u> has increased significantly, and the water ecological deficit has decreased significantly.



What we get

Year	т	Result
2005	0.100	weak decoupling
2006	0.203	weak decoupling
2007	-0.171	weak decoupling
2008	0.033	weak decoupling
2009	0.034	weak decoupling
2010	0.088	weak decoupling
2011	0.153	weak decoupling
2012	-0.341	strong decoupling
2013	0.250	weak decoupling
2014	-0.384	strong decoupling
2015	-2.278	strong negative decoupling
2016	-0.152	strong decoupling
2017	0.125	weak decoupling

- The coordinated relationship between EFw and GDP has improved, but it has not yet reached the best state.
- Before 2012, the socio-economic development had a strong dependence on water resources, and the water resources utilization efficiency was low.
- After 2012, the economic development of the basin moderately slowed down, shifted to highquality development, and gradually improved the efficiency of water resources utilization.


- EF_w varies greatly among different provinces. the largest is Inner Mongolia, the smallest is Sichuan.
 The main contributors to EF_w in each province are agricultural water and industrial water, specifically, the middle reaches(Henan, Shaanxi, Shanxi, Inner Mongolia which It is a major producer of water-intensive crops and industrial products such as wheat, corn, cotton, coal, steel, and electricity.)
- EC_w varies greatly among different provinces. the largest is Qinghai, the smallest is Ningxia.
- upstream:water resources surplus;the midstream and downstream: overloading.Ningxia and Inner Mongolia especially serious.
- Gansu, Sichuan, Qinghai and Shangdong are strong decoupling, while others are weak decoupling.

Thanks for Listening!

ADB