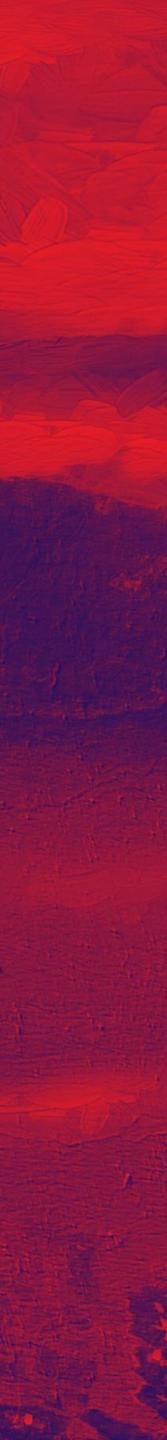
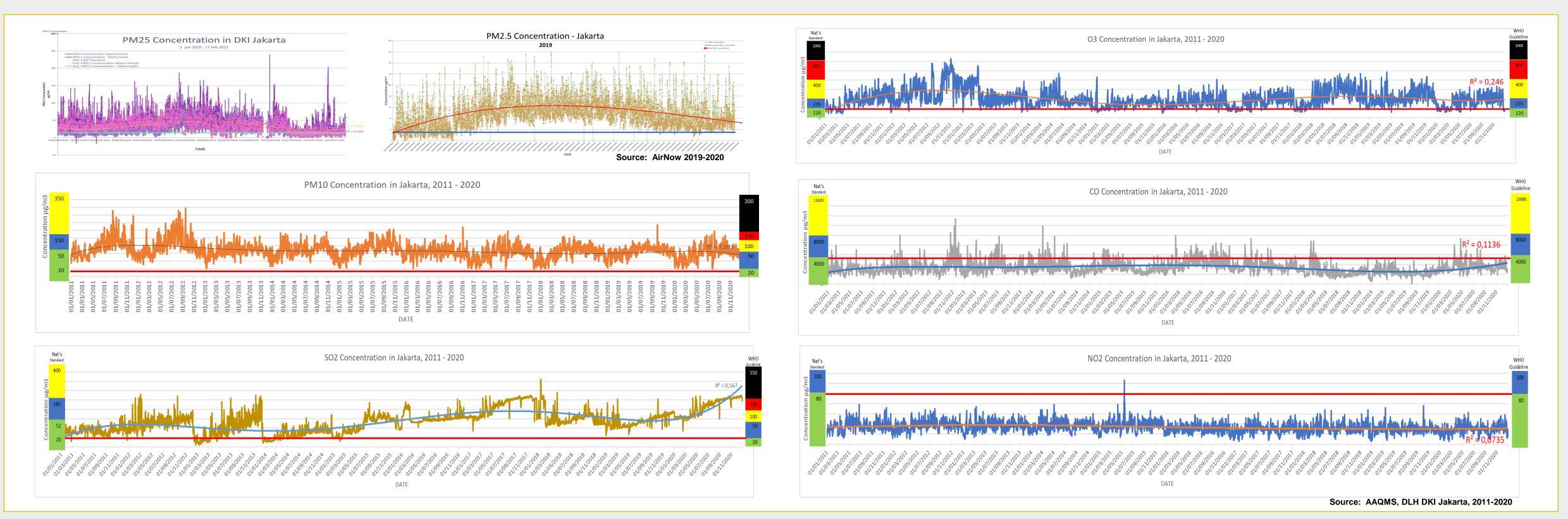
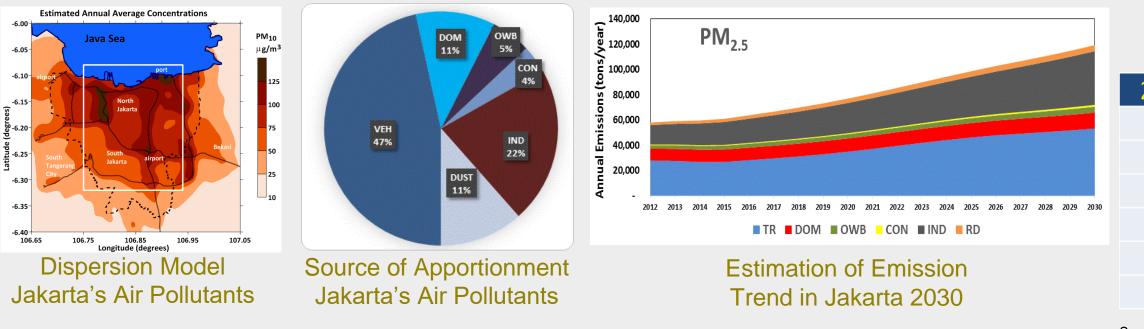


S20 High Level Policy Webinar APPLYING SCIENCE AND TECHNOLOGY CLEAN AIR AND CLIMATE CO-BENEFITS FOR


Ahmad Safrudin - KPBB

30 June 2022


This is not an ADB material. The views expressed in this document are the views of the author/s and/or their organizations and do not necessarily reflect the views or policies of the Asian Development Bank, or its Board of Governors, or the governments they represent. ADB does not guarantee the accuracy and/or completeness of the material's contents, and accepts no responsibility for any direct or indirect consequence of their use or reliance, whether wholly or partially. Please feel free to contact the authors directly should you have queries.


How to be Consistent on Science Based Policy for Clean Air and Climate Co-benefits in Indonesia? Case study: CBA Low Emission Vehicle and Low Carbon Emission Vehicle

Session: Public Private Partnership and Stakeholder Engagement

Jakarta's Air Quality Status 2011 - 2020 **※**令

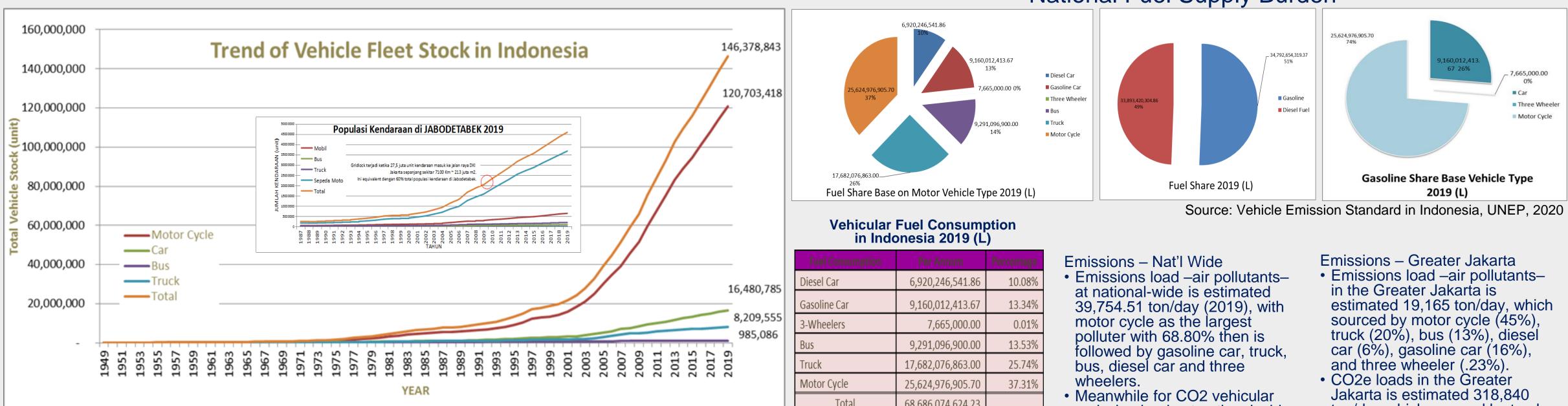
Source: Breathe Easy Jakarta, US-EPA, 2017

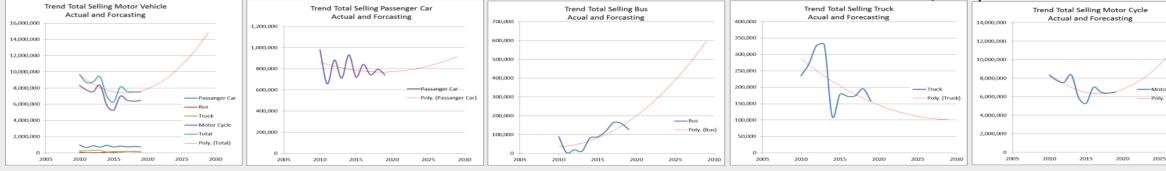
Health Effects of Air Pollution in Jakarta

	ΠΙσακά	inta
2010 Case	2016 Case	DIESES/ILLNESS
1,210,581	1,489,014	Astma
173,487	214,256	Broncho-pneumonia
153,724	172,632	COPD
2,449,986	2,731,734	ARI/ISPA
336,273	373,935	Pneumonia
1,246,130	1,386,319	Coronary artery dieses

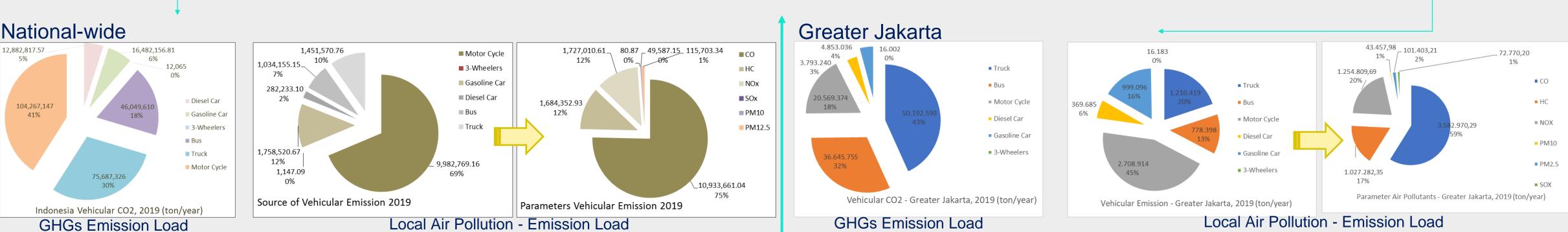
Source: Fuel Quality, Fuel Economy Initiative in Indonesia, US-EPA/UNEP, 2012; Up dated Study on Health Effect of Air Pollution, KPBB, 2016.

- In the 2011 2020 decade, Jakarta's air quality was in the unhealthy category with dominant parameters PM10, PM2.5, O3, SOx. The annual mean concentrations of PM2.5, PM10, O3 and SO2 (2020) were 46.1 g/m3, 59.03 g/m3, 83.3 g/m3 and 42.76 g/m3 respectively.
- Meanwhile, the concentrations of NO2 and CO (average 8 hours) were 14.92 g/m3 and 3610 g/m3, respectively (2020).
- Base on source of apportionment air pollutants study shows that transportation is the most polluters for Jakarta.
- Health Effects: respiratory illness/dieses, nasopharynx cancer, coronary artery dieses, etc with medical cost IDR 38.5 T (2010) and IDR 51.2 T (2016)





℅ Vehicle Fleet Statistic



Source: BPS, SAMSAT, GAIKINDO, AISI, 2019; Vehicle Fleets Statistic in Indonesia, UNEP, 20

Total sales (2019): 1,02 million units car and 6.48 million units motor cycle p.a.

National-wide

National Fuel Supply Burden

	Fuel Consumption	Per Annum	Percentage	
),785	Diesel Car	6,920,246,541.86	10.08%	
,,705	Gasoline Car	9,160,012,413.67	13.34%	
,555	3-Wheelers	7,665,000.00	0.01%	
086	Bus	9,291,096,900.00	13.53%	
	Truck	17,682,076,863.00	25.74%	
	Motor Cycle	25,624,976,905.70) 37.31%	
	Total	68,686,074,624.23		
2020	Jenis BBM	Total Demand KL	Prosentase	
	Premium88	16,146,642,866	23.51%	
	Pertalite90	16,693,758,624	24.30%	
	Pertamax	12,470,002,068	18.16%	
-	Pertamax Turbo	230,470,008	0.34%	
	Solar48	22,376,490,533	32.58%	
Cycle	Dexlite51	468,097,470	0.68%	
Motor Cycle)	Perta-DEX	300,613,054	0.44%	
	Perta-DEX HQ	-	0.00%	
2030	JUMLAH	68,686,074,622	100%	

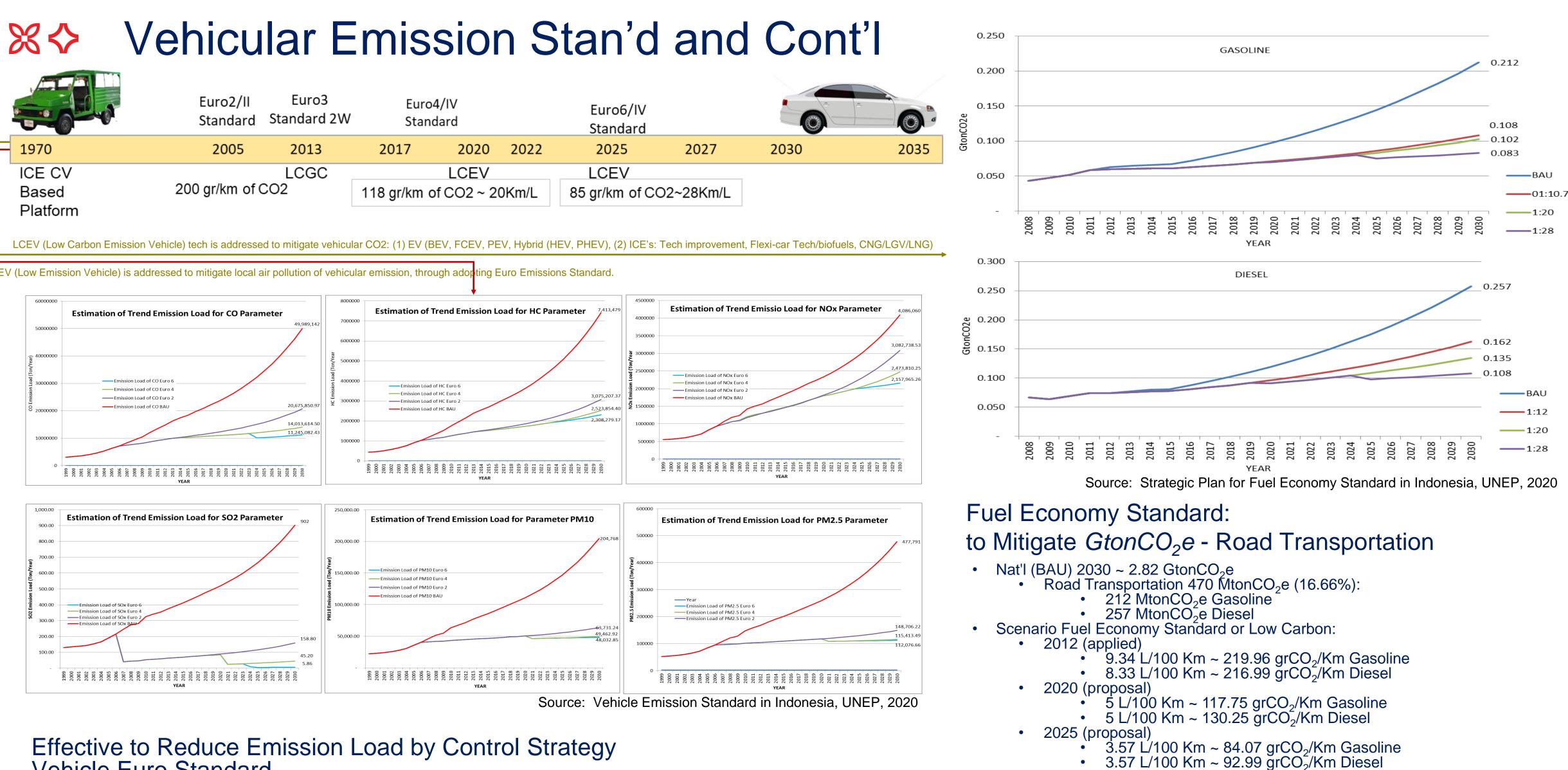
- emission loads at national-wide is estimated 699,674.31 ton/day (2019), again motor cycle as largest polluter with 40.83% or 285,663.42 ton/day then it is followed by truck, bus, gasoline car, diesel car and three wheelers.

- ton/day which sourced by truck (43%), bus (32%), motor cycle (18%), gasoline car (4%), diesel car (3%), and three-wheeler (.01%).
- Emission load in Greater Jakarta is estimated would be increase 1.8 - 3.5 times in 2030 (BAU, baseline 2012)

Emission Reduction Strategy

Quality of Energy	Energy Economical Technology	Land Use, Traffic and Transport Management	Standard	Law Enforcement 'n (dis)incentiv	
MOEMR, MOEF, Pertamina, PGN, PLN, City Government	MOI, MOT, MOEF, AUTO- INDUSTRY, City Government	MOI, MOT, MOEF, City Government	MOEF, MOI, MO Energy, City Government	MOEF, MOT, MO Energy Traffic Police, City Governm	
 ULG Low Sulfur Fuels: CNG, LGV Gasoline for Euro 2/II, Euro4/IV Standard Diesel Fuel for Euro 3/III, and 4/IV Standard Fuel with Euro 6 Standard Low Sulfur Industrial Diesel Fuel <i>Phase-out Dirty Fuels:</i> RON 88 RON 90 CN 48 with S> 2000 ppm CN 51 with S > 500 ppm Renewable Fuels – Bio-diesel (B10 in 2006, B2.5 in 2007-2009, B0 in 2009-2015, B15% in 2015- 	 Lower Emission Vehicle: Euro Standard (2/II, 3, and 4) NGV (Natural Gas Vehicle) Soot-free Buses Scrapping Car Low Carbon Emission Vehicle: Down Sizing Prototype of EV (e-motorcycle, e-passenger vehicle, e-Bus, e-scooter): Operating EV for taxi e-Bus (trial 2019 and 2020) EV running on the road (success on market penetration) Technology Improvement Alt Low Carbon Tech Eco-mode application Automatic turn-off at the idling 	 TRANSPORTATION: Mobility Behavior: Driving Habit: Eco-driving/riding (voluntary) Speed management Vehicle utility Voluntary Public Education Reduce Motor Vehicle Dependency by CSO: TDM and TOD Mass Public Transport: MRT/LRT/BRT NMT: (limited areas in the whole of cities) Walking Cycling First and last mile e-mobility/NMT Road Pricing (not toll) Parking Management 	 Ambient Air Quality Monitoring (limited in certain cities): By PEMDA By Industrial Estate By Hazardous Industry Ambient Air Quality Standard (need to be tightened) Low Emission Vehicle Standard (local air pollution) Fuel Economy Vehicle Standard/Low Carbon Emission Vehicle Standard Stringent Emissions Index of Fuels Low Emission Zone, and zero emission zone. 	 Incentive/disincentive: <i>Fisca</i>I: Low Emission Vehicle Vehicle Carbon Tax Fuel Carbon Tax Non Fiscal <i>Market Driven</i>: Low Emission Disclosure Fuel Economy/Low Carbon Veh Disclosure and or Fuel Economy Labeling In-used Vehicle: I/M (voluntary) <i>Emission Raid.</i> 	
 2017, B20 in 2017-2019, B30 in 2019- now). Bioethanol (BE10 in 2006 and disappear since 2007). Fuel Economy spec (appropriate RON, ect). Fuel Handling Evaporated: Nozzle Evaporated Standard Tank Evaporated Transportation/Storage/Refinery. Clean and Sustainable Fuel for Electricity Supply: CNG, LNG, LPG (limited) PV Panel (very limited) Hydro Power (limited) Phase out Diesel Power Plant 	 (limited) Scrapping Car Appropriate Car Fuel Filling System (CNG and electrified urban transport). Green industry Ciller tech. 	 TDM and TOD (on progress) Road, rail, ect. (still imbalance) Underpass/fly-over at the railway crossing NMT: (Walkability City, and Cycling) First and last mile e-mobility/NMT Traffic congestion pricing Road Pricing (not toll) Parking Management Mass Public Transport: MRT/LRT/BRT: CNG, LGV E-Bus Green Freight and Logistic: CNG, LPG, LNG, soot-free Diesel, e-transporter Eco-driving Intelligence Traffic System: Traffic Light (integrated system) 	 CARBON DIOXIDE REMOVAL: Sustainable urban agriculture and soil carbon Restoration of degraded lands and protection of primary urban forests/mangrove/wetland/e stuary Bio-energy with Carbon capture and storage 	<i>Notes:</i> The regulatio are complete but officials, bureaucrate and related parties of not carry out the mandate of the constitution and othe	
 Phase out Coal Fired Power Plant. Electricity for Transportation. 	Not Implemented yet <i>italics is priority program</i>	 Toll gate (Gantry and OBU) ERP Gantry Motor Vehicle dBase 	 Direct air Carbon capture and storage 	laws and regulations	

- Local Air Pollution: PM, HC, CO, NOx, O3, SOx:
- Global Green House Gas: CO2



		Euro2/II Standard	Euro3 Standard 2W	Euro Stan	•		Euro6/IV Standard		
F	1970	2005	2013	2017	2020	2022	2025	2027	
	ICE CV		LCGC		LCEV		LCEV		
	Based	200 gr/km of CO2		118 gr/km of CO2 ~ 20Km/L			85 gr/km of CO2~28Km/L		
	Platform								

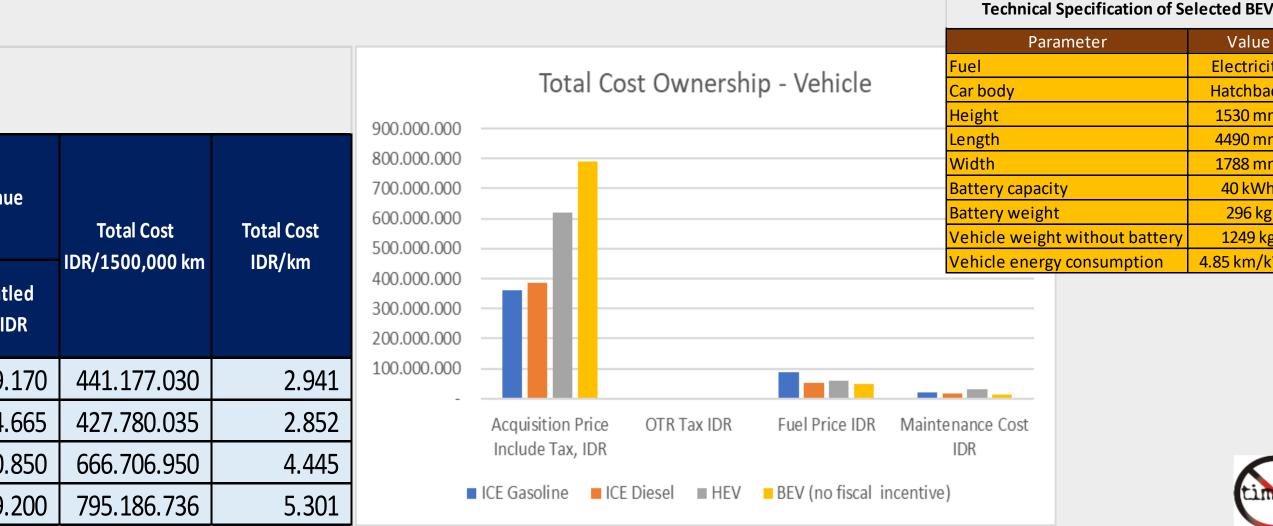
LEV (Low Emission Vehicle) is addressed to mitigate local air pollution of vehicular emission, through adopting Euro Emissions Standard.

Vehicle Euro Standard

- Avoid LEV and keep dirty fuels of Premium 88, Pertalite 90, Solar 48 and Dexlite 51 could be increasing of air pollution in 2030:
 - ~8x emission load in 2000
 - ~2x emission load in 2019.
 - Increasing cases of illness/dieses related to the air pollution.
 - Tend to increase rain acid, and other environmental degradation.

- Above scenario will decrease GHGs (2030) total 280 MtonCO₂e or 59% of BAU:
 - > target NDC (41%)
 - Competitive advantage nat'l auto-industry at regional market Fuel Economy • performance 4.4 L/100 Km).
 - Equivalent to saving 59.86 Mio KL gasoline p.a. dan 56 Mio KL diesel fuel • p.a. on 2030 ~ Rp 677 trillions.

Total Cost Ownership of e-Bus vs Diesel and CNG Bus

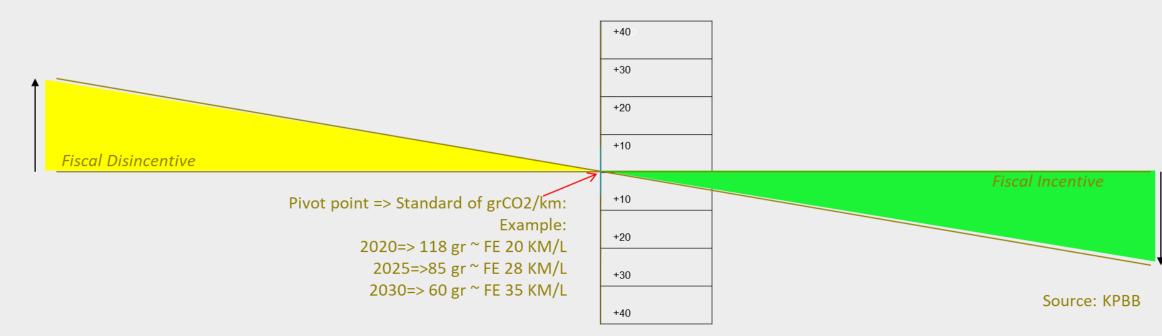

Particular	ICE Diesel Bus with 1800 ppm Dirty Subsidied Fuel	ICE Diesel Bus with 350 ppm Non- Subsied Fuel	ICE CNG-Bus	e-Bus	e-Bus with Incentive Tariff of Electricity
Contractual period (year)	7	7	7	8	8
CAPEX					
Chasis unit price	1.230.000.000	1.230.000.000	2.200.000.000	3.570.000.000	3.570.000.000
Import duty	-	-	-	178.500.000	178.500.000
Importation VAT	-	-	-	357.000.000	357.000.000
Importation Income Tax	-	-	-	89.250.000	89.250.000
Vehicle Tax	29.096.600	29.096.600	29.096.600	55.000.000	55.000.000
Total Price - Chassis unit	1.259.096.600	1.259.096.600	2.229.096.600	4.249.750.000	4.249.750.000
Caroserry	828.500.000	828.500.000	828.500.000	1.050.000.000	1.050.000.000
Air Conditioning	126.400.000	126.400.000	126.400.000		
Replacement Battery	-	-	-		
Replacement Caroserry	-	-	-		
Residu Price	- 126.197.806	- 126.197.806	- 126.197.806	- 302.085.750	- 302.085.750
Insurance and Provision	216.528.867	216.528.867	216.528.867	518.315.550	518.315.550
TOTAL CAPEX	2.304.327.661	2.304.327.661	3.274.327.661	5.515.979.800	5.515.979.800
OPEX					
Maintenance and Reparation	4.599.325.045	4.599.325.045	4.139.392.541	2.667.608.526	2.667.608.526
Fuel	1.200.212.650	2.598.518.650	722.458.100	2.093.737.375	1.871.275.990
Overhaed Cost	110.825.016	110.825.016	110.825.016	62.579.058	62.579.058
TOTAL OPEX	5.910.362.711	7.308.668.711	4.972.675.657	4.823.924.959	4.601.463.574
TOTAL CAPEX + OPEX	8.214.690.372	9.612.996.372	8.247.003.318	10.339.904.759	10.117.443.374
Rp/Km	19.100	22.352	19.176	21.037	20.584
Operation day/year	320	320	320	320	320
VKT/day	192	192	192	192	192

Passanger Vehicle	Manufacurir	ng Phase	Operat	ion Phase	End-of-Life Phase	Revenu
	Acquisition Price Include Tax, IDR	OTR Tax IDR	Fuel Price IDR	Maintenance Cost IDR	Deregistration Tax IDR	Dismantl Price II
ICE Gasoline	360.255.600		88.727.400	19.213.200	0	- 27.019.
ICE Diesel	386.062.200		53.306.100	17.366.400	0	- 28.954.
HEV	618.678.000		61.479.000	32.950.800	0	- 46.400.
BEV (no fiscal incentive)	791.856.000		49.484.536	13.235.400	0	- 59.389.

Source: Triggering a Strategic Thing of Electrified Vehicle for Transport Decarbonizing in Indonesia, Working Paper, KPBB supported by ClimateWorks Foundation, 2022

TCO Analysis **EV versus ICE Tech**

- Referring to the TCO analysis shows that CAPEX-BEV is relatively more expensive than ICE, and HEV technology.
- However, BEVs have the lowest operating costs, and are effective in mitigating GHGs, making them the best choice for strategies to achieve NDC targets, Net Zero Emissions, and seizing green technology for green growth.
- Fiscal incentives/disincentives are needed to create affordable BEV (TCO):
 - Vehicle
 - Fuel/energy price



Value Electricity Hatchback 1530 mm 4490 mm 1788 mm 40 kWh 296 kg 1249 kg 4.85 km/kWh

Tax Feebate/Rebate for LCEV, A Trigger for LCEV

Fiscal incentive for LCEV (Low Carbon Emission Vehicle) is taken from excise of vehicle with exceeded grCO2/km standard:

- Carbon Tax (excise). Motor Vehicles which have lower grCO2/km or the most fuels economy would be gained higher incentive with its consequence to be lower prices of motor vehicle in the market.
- Monetary measurement. Fiscal incentive/disincentive of Vehicle Carbon Excise would be charged when purchasing a new vehicle.
- Cost neutral principle.

• To keep the competitive advantage of domestic product of LCEV, it is considered to cover total CO2 delivery process of motor vehicle from its manufacturers at separated CO2 calculation for difference fiscal incentive/disincentive (LCA, Life Cycle Analysis).

BEV or Battery Electric Vehicle is the most economic benefits of vehicular emission control strategy (Rp 9,603 trillion by 2030), whether local air pollution and GHGs.

- HEV or Hybrid Electric Vehicle is the next control strategy which generate the most economic benefits (Rp 7,904 trillion by 2030)
- Sustainability on applying control strategy through Euro Standard (Euro 2 by 2005, Euro 3 for 2-wheelers by 2013, Euro 4 by 2018, and Euro 6 by 2025; would be generate economic benefits Rp 3,493 trillion by 2030.
- economic benefits significantly.
- Economic benefits are generated by fuel saving (energy efficiency), health improvement, and production saving.

	Policy Option							
Particular	Euro 2 since 2005*	Euro 3 Since 2013 (2/3- Wheelers)	Euro 4 (Since 2020)*	Euro 6 (Since 2025)	HEV*	BEV	Scrappa Car*	
Cost								
Refinery/Energy Storage Production	467,416	0	466,745	926,550	338,794	387,452	464	
Technology Utilization	493,312	390,921	493,312	540,769	784,586	722,604	30	
Total Cost	960,728	390,921	960,057	1,467,319	1,123,380	1,110,056	495	
Benefit								
Health Improvement	1,656,264	2,706,545	1,648,305	2,873,522	2,854,542	3,468,269	1,667	
Production Saving	27,712	45,285	31,387	54,718	448,393	544,797	36	
Fuel/Energy Saving	286,392	468,001	324,084	564,982	4,601,071	5,590,301	373	
Total Benefit	1,970,368	3,219,831	2,003,776	3,493,221	7,904,006	9,603,367	2,077	
FY Until 2030								
Net Benefit	1,009,640	2,828,910	1,043,719	2,025,903	6,780,626	8,493,312	1,582	
NPV; SDR 8%	38,963	166,967	47,736	338,787	1,563,678	3,264,400	290	
Net Benefit Average	38,832	166,406	40,143	337,650	260,793	1,415,552	60	
FY Until 2030								
Fuel Saving	286,392	468,001	324,084	564,982	4,601,071	5,590,301	373	
NPV; SDR 8%	71,395	178,434	84,727	293,791	1,098,827	1,118,060	91	
Net Benefit Average	13,018	27,529	14,731	94,164	209,140	559,030	16	

Excise base on Carbon emission tends to drive people to utilize LCEV. LCEV would be lower price with the most fuel efficiency.

- 1. Various cities in Indonesia are still facing the threat of air pollution from various sources, especially from motorized vehicles, e.g. Jakarta, which has experienced unhealthy air quality for three decades.
- 2. On time adopting LEV and LCEV will provide triple benefits for Indonesia:
 - i. Reduce vehicular emission almost 100% of urban air pollution, and ~280 MtonCO2e or 59% of BAU of GHGs (470 MtonCO2e) in 2030;
 - ii. Gain economic benefits of thousands trillion Rupiahs in 2030 as a consequence of improving public health, and people productivity which is better air quality, and energy savings -59.86 Mio-KL gasoline, and 56 Mio-KL diesel fuel p.a. equivalent to IDR 677 T- and its multiplier effects;
 - iii. Triggering green economic growth through the automotive and energy sector.
- Even more with Indonesia success in developing low carbon of EV prototypes, and the abundant supply of raw materials for EV's battery (mining of Ni, Co, rare earth); are competitive advantages which positions Indonesia as an important part of the global EV manufacturing supply chain.
- 4. As a low-carbon vehicle, EV is a proven technology that we must seize, so that the above triple benefits can really be reaped for the inevitability of green economic growth, and prosperity of the nation.
- LCEV-based fiscal (dis)incentive would be a trigger, and paving the way to 5. accelerate LEV, and LCEV deployment in Indonesia.

Terimakasih

Thank you

Contact => Ahmad Safrudin - KPBB Sarinah Building 12th Floor, Jalan MH Thamrin # 11 Jakarta Indonesia 10350 Phone: +62-21-3190 6807 Fax: +62-21-315 3401 Mobile: +62 816897959 (WA, Line) Skype: a_safrudin Twitter: @Mas_Puput FB: Ahmad Safrudin Ig: Ahmad_Puput_Safrudin e-mail: <u>puput@kpbb.org</u>; <u>kpbb@kpbb.org</u>, www.kpbb.org

≈ ∧ Reference

Anwar Gary Haq, Giorgio Martini and Giorgos Mellios, 2013, Estimating the Costs and Benefits of Introducing a New Eur Evaporative Emissions Test Procedure, Final Report, European Commission Joint Research Centre Institute for Energ Transport

BPS, Center Bureau of Statistic, Respiratory Illness Prevalence, 2019

Harjono, M, 2019, Paying A High Price for Indonesia's Dirty Fuel Imports, San Francisco, ICCT.

https://theicct.org/publications/estimated-cost-emission-reduction-technologies-ldvs

https://www.bps.go.id/pressrelease/2020/07/15/1748/gini-ratio-maret-2020-tercatat-sebesar-0-381.html

https://www.nap.edu/read/21744/chapter/5#114

- Imam Sonny, 2019, SIMULATION MODEL OF ROAD SERVICE PERFORMANCE USING VISSIM SOFTWARE CASE DIPONEGORO ROAD, Jakarta, Badan Litbang Perhubungan, 2015
- Leonidas Ntziachristos, Zissis Samaras, EMEP/EEA air pollutant emission inventory guidebook 2019; Giorgio Zamboni, Defifinition of Two Wheelers Exhaust Emission Factors

Lukmanul Hakim, et al, 2013, To Sue the Over-pricing Dirty Subsidized Fuel, KPBB/Tawan Gugat.

Minister of Environment Decree No 10/2012 toward Emission Standard for Motor Cycle, junto Minister of Environment Decree 23/2012 toward Amendment Regulation of MOE Decree No 10/2012.

Muhammad Edo Fadhli(1), Heru Widodo(2), 2019, Analisis Pengurangan Kemacetan Berdasarkan Sistem Ganjil-Genap

Pertamina, 9 – 10 December 2019, Biofuel Workshop that is organized by Ministry of Industry, in Jakarta.

Release WHO /06, 25 March 2014

Safrudin, et al, 2020, Vehicle Emission Standard in Indonesia, UNEP

Safrudin, et al, 2020, Strategic Plan for Fuel Economy Standard in Indonesia, UNEP

ropean	Safrudin, et al, 2020, Vehicle Fleet Statistic in Indonesia, UNEP.
gy and	Safrudin, et al, 2002, Vehicular Emission Reduction Strategy in the Greater Jakarta,
	Safrudin, et al, 2020, CO2 Transport Emission Reduction Strategy –up dated report of first edition 2017–, KPBB
	Safrudin, et al, 2017, Compendium Indonesia Fuel Quality, Jakarta, KPBB.
	Safrudin, et al, 2018, Old and New Year Notification toward Dirty Imported Fuel, Press Release, Jakarta, KPBB.
	Safrudin, et al, 2019, To Release Importation Traps of Fuels, Press Release, Jakarta, KPBB.
	Safrudin, et al, 2016, Behind Fuel Pricing Policy, KPBB.
STUDY	Safrudin, et al, 2012, CBA Fuel Economy and Fuel Quality Initiative in Indonesia, UNEP/USEPA/MOE.
On the	Safrudin, et al, 2019, Current Status and Strategic Action to Solve Polution Problem of ULAB Recycling, Indonesian Lead Information Center.
	Safrudin, et al, 2020, Trend of Motor Vehicle Population in Indonesia, KPBB.
	Safrudin, et al, 2016, Up dated Study on Health Effect of Air Pollution, KPBB.
ecree No	Safrudin, et al, 2016, Vehicle Kilometer Traveled in Indonesia, KPBB.
p, ITSB.	Safrudin et al, 2022, Triggering a Strategic Thing of Electrified Vehicle for Transport Decarbonizing in Indonesia, Working Paper, ClimateWorks Foundation, KPBB.
	The RIPIN, 2018, A Guiding Document for Indonesia's Industry with a Vision to Strengthen Indonesia's Industries Based on Innovation and Technology, Jakarta, Ministry of Industry.
	Vincenzo Piemonte, Associate Professor, Green Diesel Production by Hydro-refining Renewable Feedstock, UOP and Michigan Technology University, Article, University UCBM – Rome, Italy. <u>http://www.oil-gasportal.com/green-diesel/?print=pdf</u>

www.cnbcindonesia.com/news/2020101351318-4-194004/wuih

