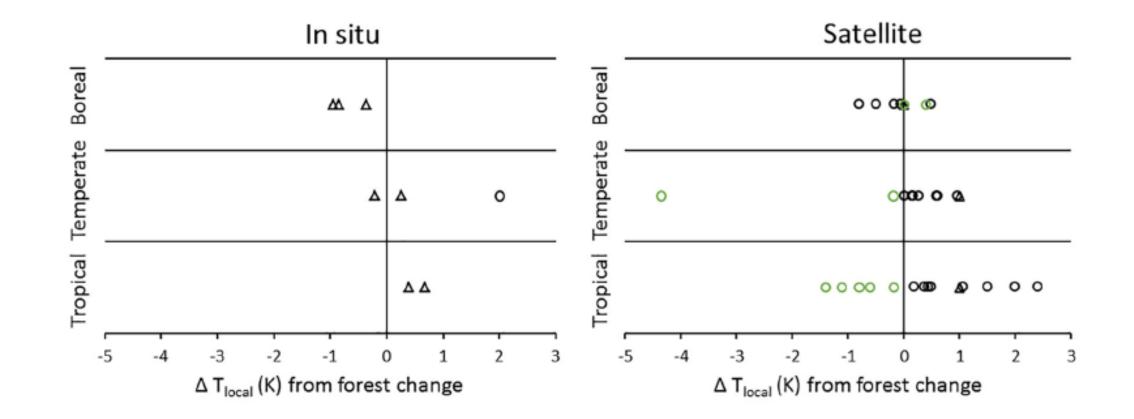


Asia-Pacific Rural Development and Food Security Forum 2022 Battling Climate Change and Transforming Agri-food Systems

Technical Session 2: Pathways to Sustainable and Inclusive Food Systems

Louis Verchot

Alliance Bioversity – CIAT

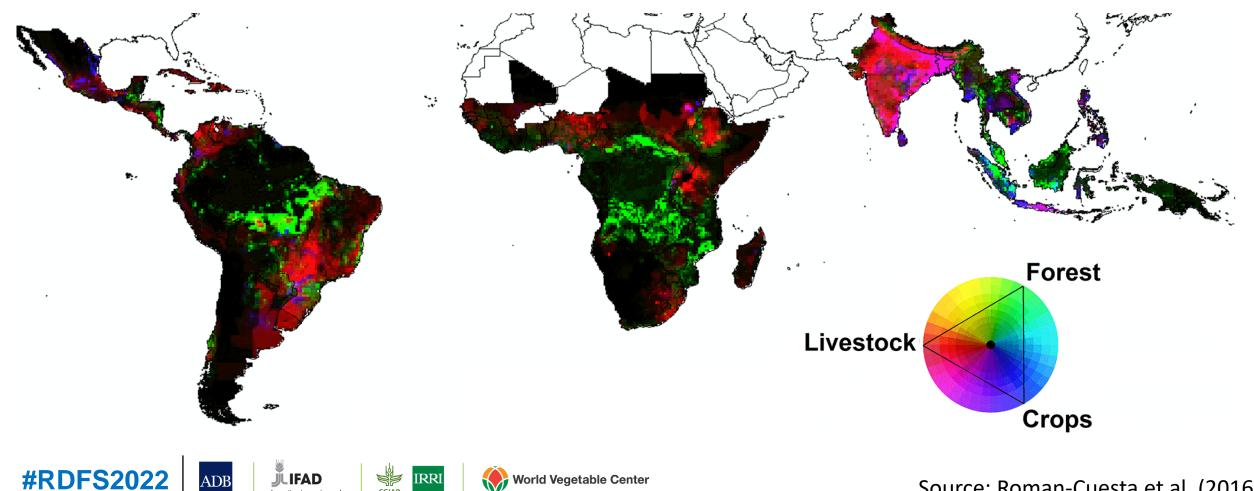

				Direc	t Anthropog	enic							
Gas	Units		opogenic emiss Forestry, and O (AFOLU)		Non-AFOLU anthropogenic GHG emissions ⁶	anthro emissior	al net opogenic is (AFOLU + DLU) by gas	AFOLU as a % of total net anthropogenic emissions, by gas	ir envi	l respo to hum nduced ronme hange ⁷	nan- Intal	atmo flux fi	and – sphere rom all nds
Panel 1: Contr	ibution of A	FOLU											
		FOLU	Agriculture	Total									
		А	В	C = A + B	D	E =	C + D	F = (C/E) *100		G		А	+ G
CO_2^2													
CO_2	Gt CO ₂ y ⁻¹	5.2±2.6	No data ¹¹	5.2 ± 2.6	33.9 ± 1.8	39.1 ±	3.2	13%	-11.2	±	2.6	-6.0	± 3.7
CH4 ^{3,8}	Mt CH ₄ y ⁻¹	19.2±5.8	141.6 ± 42.5	160.8 ± 43	201.3 ± 100.6	362 ±	109						
CH4	Gt CO₂e y⁻¹	0.5±0.2	4.0 ± 1.2	4.5 ± 1.2	5.6 ± 2.8	10.1 ±	3.1	44%					
N ₂ O ^{3,8}	Mt N ₂ O y ⁻¹	0.3±0.1	8.3 ± 2.5	8.7 ± 2.5	2.0 ± 1.0	10.6 ±	2.7						
N ₂ U [×]	Gt CO₂e y⁻¹	0.09±0.03	2.2 ± 0.7	2.3 ± 0.7	0.5 ± 0.3	2.8 ±	0.7	81%					
Total (GHG)	Gt CO ₂ e y ⁻¹	5.8±2.6	6.2 ± 1.4	12.0 ± 2.9	40.0 ± 3.4	52.0 ±	4.5	23%					

				Direc	t Anthropog	enic								
Gas	Units		pogenic emiss orestry, and O (AFOLU)		Non-AFOLU anthropogenic GHG emissions ⁶	anthro emissior	tal net opogenic ns (AFOLU + DLU) by gas	AFOLU as a % of total net anthropogenic emissions, by gas	iı envi	l respo to hun nduced ronme hange ⁷	nan- ntal	Net atmo flux f la	sphe	ere
Panel 1: Contri	ibution of A	FOLU												
		FOLU	Agriculture	Total										
		А	В	C = A + B	D	E =	: C + D	F = (C/E) *100		G		А	+ G	
CO_2^2														
CO_2	Gt CO₂ y⁻¹	<mark>5.2</mark> ± 2.6	No data ¹¹	<mark>5.2</mark> ± 2.6	33.9 ± 1.8	39.1 ±	3.2	13%	-11.2	±	2.6	-6.0	±	3.7
CH4 ^{3,8}	Mt CH ₄ y ⁻¹	19.2 ± 5.8	141.6 ± 42.5	160.8 ± 43	201.3 ± 100.6	362 ±	109							
CH ₄	Gt CO₂e y⁻¹	<mark>0.5</mark> ± 0.2	<mark>4.0</mark> ± 1.2	<mark>4.5</mark> ± 1.2	5.6 ± 2.8	10.1 ±	3.1	44%						
N ₂ O ^{3,8}	Mt N ₂ O y ⁻¹	0.3 ± 0.1	8.3 ± 2.5	8.7 ± 2.5	2.0 ± 1.0	10.6 ±	2.7							
N ₂ U	Gt CO₂e y⁻¹	<mark>0.09</mark> ± 0.03	<mark>2.2</mark> ± 0.7	<mark>2.3</mark> ± 0.7	0.5 ± 0.3	2.8 ±	0.7	81%						
Total (GHG)	Gt CO₂e y⁻¹	<mark>5.8</mark> ±2.6	<mark>6.2</mark> ± 1.4	<mark>12.0</mark> ±2.9	40.0±3.4	52.0 ±	4.5	23%						

				Direc	t Anthropog	enic						
Gas	Units	Net anthropogenic emissions due to Agriculture, Forestry, and Other Land Use (AFOLU)		Non-AFOLU anthropogenic GHG emissions ⁶	Total net anthropogenic emissions (AFOLU + non-AFOLU) by gas	AFOLU as a % of total net anthropogenic emissions, by gas	Natural response of land to human- induced environmental change ⁷		nan- ntal	of Net land - atmosphe flux from a lands		
Panel 1: Contr	ibution of A	FOLU										
		FOLU	Agriculture	Total								
		А	В	C = A + B	D	E = C + D	F = (C/E) *100		G		A	+ G
CO ₂ ²												
	Gt CO ₂ y ⁻¹	5.2 ± 2.6	No data ¹¹	<mark>5.2</mark> ± 2.6	33.9 ± 1.8	<mark>39.1</mark> ± 3.2	13%	-11.2	±	2.6	-6.0	± 3.7
CH4 ^{3,8}	Mt CH ₄ y ⁻¹	19.2±5.8	141.6 ± 42.5	160.8 ± 43	201.3 ± 100.6	362 ± 109						
CH4	Gt CO₂e y⁻¹	0.5±0.2	4.0 ± 1.2	<mark>4.5</mark> ± 1.2	5.6 ± 2.8	10.1 ± 3.1	44%					
N ₂ O ^{3,8}	Mt N ₂ O y ⁻¹	0.3 ± 0.1	8.3 ± 2.5	8.7 ± 2.5	2.0 ± 1.0	10.6 ± 2.7						
N ₂ U	Gt CO₂e y⁻¹	0.09±0.03	2.2 ± 0.7	<mark>2.3</mark> ± 0.7	0.5 ± 0.3	<mark>2.8</mark> ± 0.7	81%					
Total (GHG)	Gt CO₂e y⁻¹	5.8±2.6	6.2 ± 1.4	<mark>12.0</mark> ± 2.9	40.0 ± 3.4	<mark>52.0</mark> ± 4.5	23%					

				Direc	t Anthropog	enic						
Gas	Units	Net anthropogenic emissions due to Agriculture, Forestry, and Other Land Use (AFOLU)			Non-AFOLU anthropogenic GHG emissions ⁶	Total net anthropogen emissions (AFO non-AFOLU) by	LU + emissions by	Natural response of land to human- induced environmental change ⁷		nan- ntal	Net la atmosj flux fro lan	phere om all
Panel 1: Contr	ibution of A	FOLU										
		FOLU	Agriculture	Total								
		А	В	C = A + B	D	E = C + D	F = (C/E) *100		G		A +	G
CO ₂ ²												
CO_2	Gt CO₂ y⁻¹	5.2 ±2.6	No data ¹¹	5.2 ± 2.6	33.9 ± 1.8	39.1 ± 3.2	13%	<mark>-11.2</mark>	±	2.6	-6.0 :	± 3.7
CH4 ^{3,8}	Mt CH ₄ y ⁻¹	19.2±5.8	141.6 ± 42.5	160.8 ± 43	201.3 ± 100.6	362 ± 109						
CH4	Gt CO₂e y⁻¹	0.5±0.2	4.0 ± 1.2	4.5 ± 1.2	5.6 ± 2.8	10.1 ± 3.1	44%					
N ₂ O ^{3,8}	Mt N ₂ O y ⁻¹	0.3±0.1	8.3 ± 2.5	8.7 ± 2.5	2.0 ± 1.0	10.6 ± 2.7						
N ₂ U	Gt CO ₂ e y ⁻¹	0.09 ± 0.03	2.2 ± 0.7	2.3 ± 0.7	0.5 ± 0.3	2.8 ± 0.7	81%					
Total (GHG)	Gt CO₂e y ⁻¹	5.8 ± 2.6	6.2 ± 1.4	12.0 ± 2.9	40.0 ± 3.4	52.0 ± 4.5	23%					

Forests moderate local climate extremes



Black symbols = deforestation; Green symbols = afforestation/reforestation

#RDFS2022

Contribution of the leading emission sources to emissions 2000-2005

CGIAF

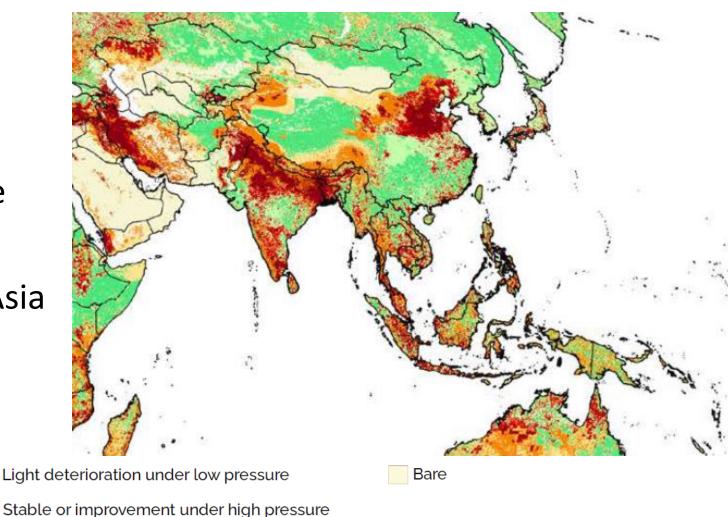

Source: Roman-Cuesta et al. (2016)

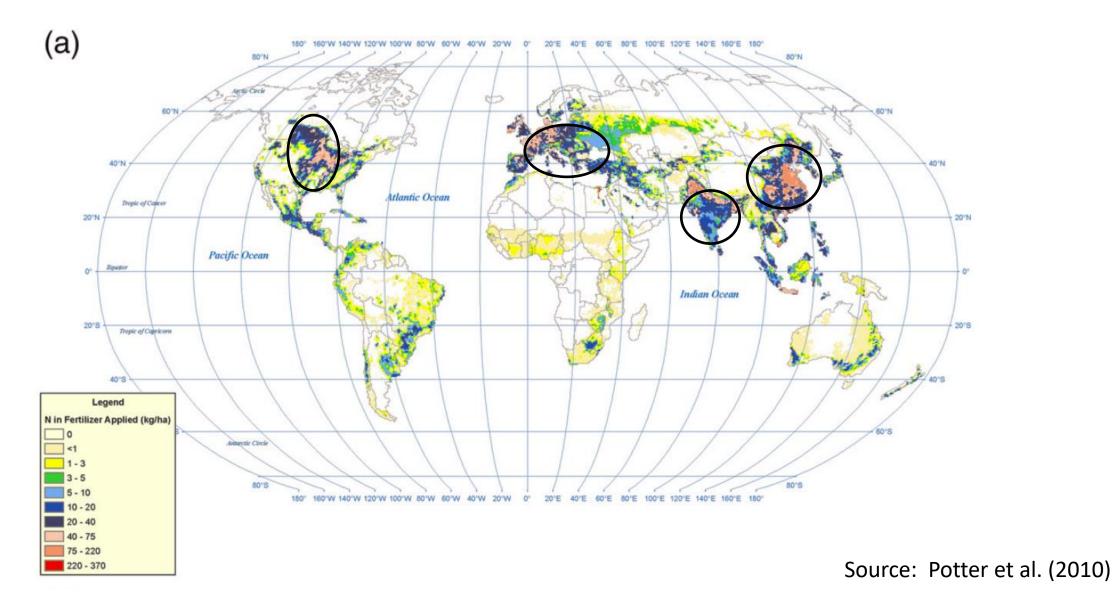
Table SPM1. Net anthropogenic emissions due to the global food system (Panel 2)

Food system component	Emission (Gt CO ₂ y ⁻¹)	Share of mean total emissions %
Crop and livestock production (N ₂ O and CH ₄)	6.2 ± 0.3	12 – 13%
Deforestation and peatland degradation for food production (primarily CO ₂)	4.8 ± 2.4	5 – 14 %
Supply chain (primarily CO ₂)	3.8 ± 1.3	5 – 10 %
Food system total	14.8 ± 3.4	23 – 35 %

Land and natural resource degradation is widespread

- 34% of agricultural lands are degraded
- 70 80% of all forests worldwide have been altered
- Hotspots: South and Southeast Asia

Strong human-induced land degradation


Light human-induced land degradation

Strong deterioration under low pressure

Stable or improvement under low pressure

Source: FAO SOLAW 2021

High rates of Fertilizer N application drive high N₂O emissions in E and S Asia

Economic trends

Meat consumption will drive increased GHG emissions

- Global livestock population 17 billion animals
- Meat consumption has almost tripled in the last four decades and has increased by over 30% in the last ten years.
- Dairy consumption is up by over 70 percent in the last four decades.
- Greatest consumption increases are seen in East and Southeast Asia (>3% y⁻¹ through 2020)

Economic trends

Meat consumption will drive increased GHG emissions

- Animal and feed management:
 - CH4 inhibitors, oils and fats, oilseeds, electron sinks, and tanniferous forages
 - Absolute reductions ~21%; no negative effect on live weight gain
- Diet formulation
 - Decreasing dietary forage-to-concentrate ratio, increasing feeding level, and decreasing grass maturity
 - Intensity reductions ~12%; increased animal production by on average 45%

Drought, flood, saltwater, and extreme temperatures devastate crops and risk the livelihoods of 144 million smallholder rice farmers each growing season

Rice cultivation contributes ~10% of anthropogenic CH₄

Breeding new varieties supports resilience to climate shocks

Water, nutrient, and residue management can reduce CH_4 emissions ~80%, but increases $N_2O \rightarrow Net$ result 50% lower GHG emissions

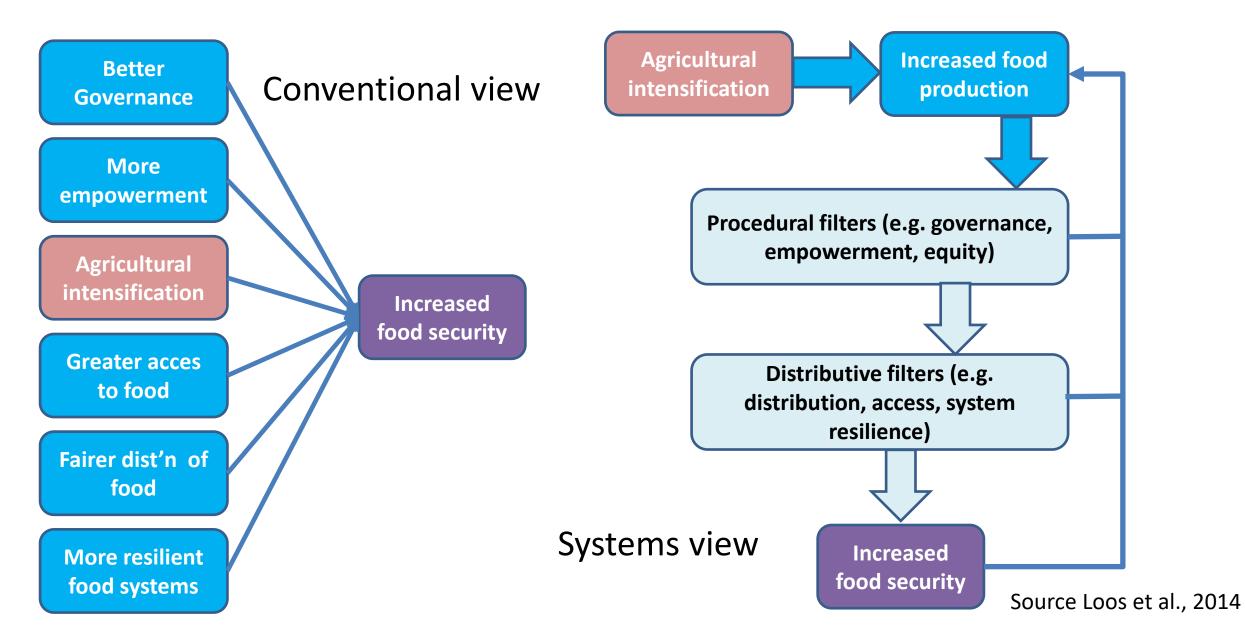
Monogastrics produce much less GHG than ruminants

	Emissions from ca	ttle	Emissions from pigs	8
	kg CO ₂ equivalents kg carcass	s/ %	kg CO ₂ equivalents/ kg carcass	%
Nitrous oxide				
Feed	1.25	12	0.38	13
Manure	1.07	10	0.07	3
Methane				
Manure	1.78	17	2.06	75
Enteric	6.33	61	0.24	9
Total non–carbon dioxide emissions	10.43		2.75	

Non-carbon dioxide emissions for producing carcasses of beef and pork

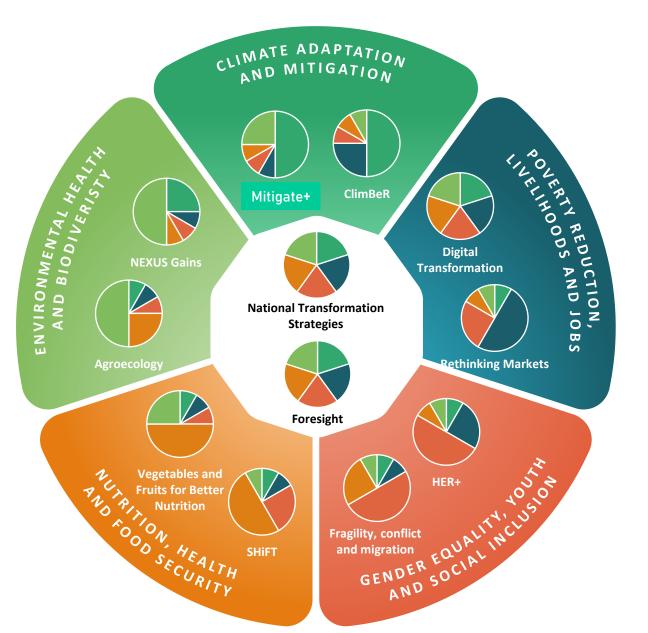
Source : Carlsson Kanyama and González (2009)

- Over 8.5 million ha have been drained for agriculture in Southeast Asia.
- Emissions from these are around 0.2 billion tonnes CO₂eq annually.
- Fire and fertilization of these soils create more emissions.



Aquaculture

A growing emissions source


- Production of fish and shellfish in aquaculture > 55 Mt (~half global fish consumption).
- This production has high N_2O emissions, which are predicted to increase to about 6% of anthropogenic N_2O emissions by 2030.

The governance context for investments is important

CGIAR reorganization: System Transformation Initiatives

Thank You!

To continue the conversation: L.verchot@cgiar.org

