

Webinar series: Challenges, Lessons, and Innovations for IFRM

Session 1: A country-scale view on IFRM and applications of global datasets

TA 9634-REG: Strengthening Integrated Flood Risk Management This is not an ADB material. The views expressed in this document are the views of the author/s and/or their organizations and do not necessarily reflect the views or solicies of the Asian Development Bank, or its Board of Governors, or the governments they represent. ADB does not guarantee the accuracy and/or completeness of he material's contents, and accepts no responsibility for any direct or indirect consequence of their use or reliance, whether wholly or partially. Please feel free to contact the authors directly should you have queries.

Webinar Agenda

- Welcome remarks by Lorena Ramirez, Moderator and TA9634 Project Manager, Landell Mills

- **Opening remarks** by Chief of Urban Sector Group, Sustainable Development and Climate Change Department, ADB

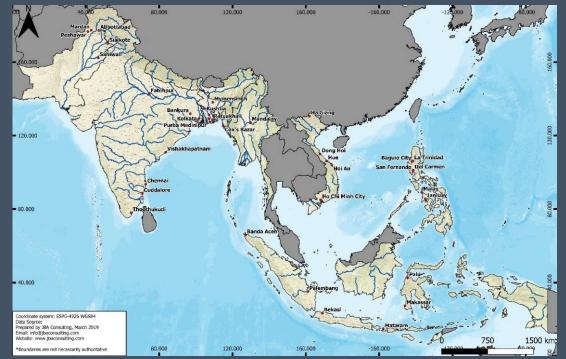
- Overview of TA9634 and intro to Webinar series by Ian Wood, TA9634 Team Leader, Landell Mills

- Comparative assessment of flood risk across eight countries by Tony Green, IFRM Specialist, JBA Consulting

- Application of NIRA Tool for Nepal, Pakistan & Indonesia by Barry Hankin, Flood Modeler and Hazard Mapping Specialist, JBA Consulting

- Using NIRA for the prioritization of IFRM investments in Indonesia by Barry Hankin, Flood Modeler and Hazard Mapping Specialist, JBA Consulting

- Discussion
- Closing remarks



TA 9634 REG 'Strengthening Integrated Flood Risk Management'

Overall objective: *Strengthen the design and implementation of IFRM solutions, enhancing knowledge and application of IFRM strategies*

Commenced in February 2019, concludes in June 2022

8 Countries: Indonesia, Philippines, Viet Nam, Myanmar*, Bangladesh, India, Nepal and Pakistan

Webinar series

Session	Date	Title
1	March 9	A country-scale view on IFRM and applications of global datasets
2	March 15	Application of an IFRM Approach at a River Basin Level
3	March 22	Coastal Flood Risk Assessment
4	March 30	Economic and Finance for IFRM
5	April 5	Outlook for IFRM and Ways Forward

Objective: To share our experiences from *implementing the* KSTA project and reflect on issues and lessons learned for applying IFRM in practical applications Integrated Flood Risk Management – National Scale <u>'Sector' Assessment</u> Heavy rainfall readily Integrates Impacts – but are the human systems integrated to respond?

Flood as a Sector Change Integration

Assessment Using Global Flood Mapping Features Institutions and Infrastructure Investments

Impacts of Climate Change - Projected Future Flood Risks including sea level rise critical for Asian Cities

SIXTH ASSESSMENT REPORT

Working Group II – Impacts, Adaptation and Vulnerability

INTERGOVERNMENTAL PANEL ON Climate change

İPCC 🔅 🗰

Key risks and adaptation options in select cities across Asia

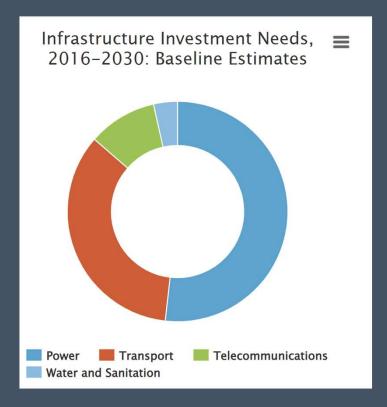
		Central Asia	North Asia	West Asia		South Asia		Ea		S	outheast As	ia
		Tashkent	Salekhard	Riyadh	Ahmedabad	Mumbai	Dhaka	Guangzhou	Shanghai	Kuala Lumpur	Jakarta	Ho Chi Minh City
Population (thousands	Observed (2020)	916	55	7,231	8,059	20,411	21,006	13,302	27,058	7,997	13,923	8,602
of people)	Projected (2035)	1,388		9,058	11,295	27,343	31,234	16,741	34,341	10,467	12,549	12,230
Key risks	Floods	/	1		*				٠			
	Sea level rise	na	na	na	na				•	na		
	Heat, urban heat island	1				0		•	•		•	*
	Extreme rain	1	/		*	•		0	•			
	Drought, water scarcity	1	/			*		*	*	•	•	1
	Cyclones	na	na	na	na	\bigcirc		1		/	na	1
	Permafrost thaw	1		na	na	na	na	na	na	na	na	na
Progress	Institutional	1	•	•		*	•			•		•
	Infrastructural	1	•	1								
	Ecosystem-based	1	/	1		*			•			0
	Behavioural	1	/	•		*	/	0	*	*		•
Risk level	0 0	C	> *		R	isk evidenc	e 🔵	•	•			
	Large Moder	ate Sm	nall Neglig	ble			Low	Medium	High	/ = Ins	sufficient liter	ature
gress level	0 0	C	*		Progre	ess evidenc	e 🔴			na = not	applicable	
	High Mediu	ım Lo	w No repo	orted			Low	Medium	High			

Flood from Rivers and sea

Critical

Source: IPCC Sixth Assessment Report – WGII – Fact Sheet Asia

Integrated Flood Risk Management – Change

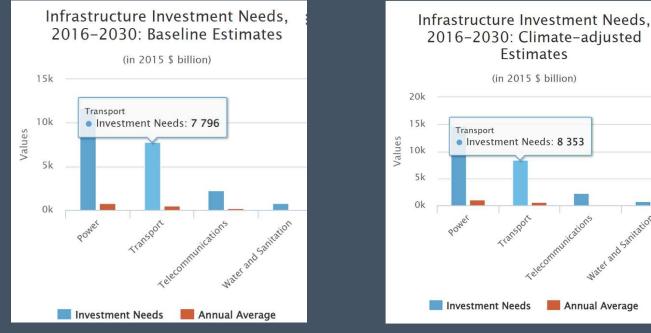

 Rising Frequency and Severity

- Rising Expectations with development
 - Less tolerance as 'possessions' & capital stock increases.
 - Insurance role residual
 - Planning economic
 benefit of risks and
 standards of service

Integrated Flood Risk Management – as a 'sector'

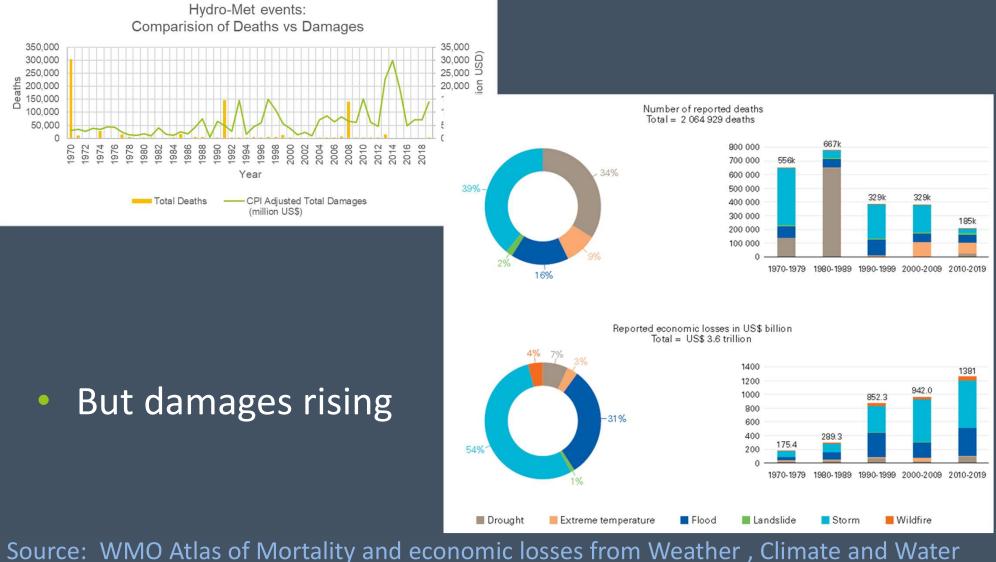
 Context of IFRM Infrastructure/Capex

Infrastructure 'Sectors'

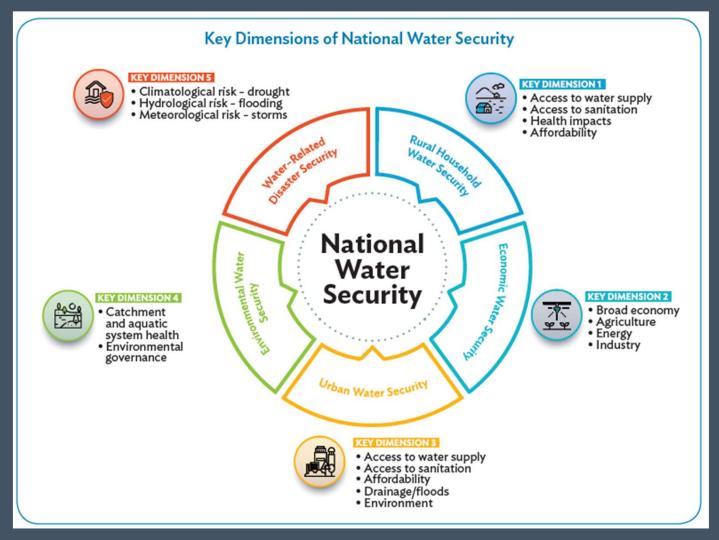

- Power
- Transport
- Telecoms
- Water & Sanitation
 (Water is the smallest and flood is generally a small part of water)

Source: ADB Meeting Asia's Infrastructure Needs (2017)

Context of IFRM Investment


Climate Change – Estimated Infrastructure investment needs in Asia

Climate has more <u>impact</u> on transport (\$550b) infrastructure than total spend of the whole flood sector and most of the water sector (\$802b)


Source: ADB Meeting Asia's Infrastructure Needs (2017)

Integrated Flood Risk Management – Change Getting better at responding and disaster preparation

Extremes (1970-2019) WMO Publication 1267

Water Security Asian Water Development Outlook (2020)

Source: ADB AWDO 2020

Integrating Are we ready for the coming storms?

Managing Rivers

Managing Cities

Managing Land

Coast and Sea

Weather Services

Disaster Response

National Scale 'Sector' Assessment Benchmarking

a) Magnitude of the flood issue in each country - Flood Risks, Hazard and Exposure.

b) Flood Management Status – Hygo/Sendai Progress, Capital Expenditure, Levels of Protection achieved, balance between hard and soft approaches to risk reduction.

c) Integration - Information and Governance

Clear responsibilities and coordination

To use flood data it must be easily available such as for land use or transport planning.

National Scale – Magnitude of Flood Issue

- b) Defences
- c) Population

	_		Inundation Area (km²) (natural floodplain)										
	Country	Total Area		100yr Extreme Flood (150									
		(km ²)	Area	% of total land mass	Area	% of total land mass							
]	Bangladesh	130,170	58,849	45	73,151	56							
	Indonesia	1,811,570	265,873	15	423,202	23							
	Nepal	143,350	9,525	7	18,432	13							
	Pakistan	770,880	160,266	21	253,427	33							
	Philippines	298,170	51,128	17	79,933	27							
	Viet Nam	310,070	65,531	21	104,907	34							
	Total	3,464,210	611,173	15%	953,051	23%							

a) GIS analysis – AREA OF NATURAL FLOODPLAIN

				n Area (km²) floodplain)				
Country	Total Area		100yr	Extreme Flood (1500y)				
	(km ²)	Area	% of total land mass	Area	% of total land mass			
Bangladesh	130,170	58,849	45	73,151	56			
Indonesia	1,811,570	265,873	15	423,202	23			
Nepal	143,350	9,525	7	18,432	13			
Pakistan	770,880	160,266	21	253,427	33			
Philippines	298,170	51,128	17	79,933	27			
Viet Nam	310,070	65,531	21	104,907	34			
Total	3,464,210	611,173	15%	953,051	23%			

Source of data: JBA Global Fluvial Flood and Defences Mapping 2021

b) People living in floodplains

		Population at risk of river flood (million) (people living in floodplains)							
Country	Total Population	100)yr	Extreme Flood (1500yr)					
	(million)	People (m)	% of Pop	People (m)	% of Pop				
Bangladesh	165	67	41%	85	51%				
Indonesia	274	69	25%	113	41%				
Nepal	29	4	15%	7	2 <mark>4</mark> %				
Pakistan	221	64	29%	97	44%				
Philippines	110	35	32%	54	49%				
Viet Nam	97	37	38%	51	52%				
Total/Average	895	277	31%	406	43%				

Source of data: JBA Global Fluvial Flood and Defences Mapping 2021

C) Areas and People Protected by Defences

		Defended Area Statistics														
Country	Area at Risk for 100yr (km2)	Total Protected Area >50 year (km²)	Proportion of area at risk having defences >50 yr	Population with protection >50 year (million)	% of Population at risk having protection >50yr	Population with protection 100 year (million)	% of Population at risk having protection >100yr									
Bangladesh	58,849	2251	4%	28	33%	13	19%									
Indonesia	265,873	7761	3%	35	31%	20	29%									
Nepal	9,525	2465	26%	7	100%	2	43%									
Pakistan	160,266	12165	8%	48	49 %	24	37%									
Philippines	51,128	2456	5%	17	31%	11	30%									
Viet Nam	65,531	8399	13%	27	54%	17	47%									
Total	611,173	35,496		161	40%	86	31%									

Source of data: JBA Global Fluvial Flood and Defences Mapping 2021

d) People at risk on the Coast

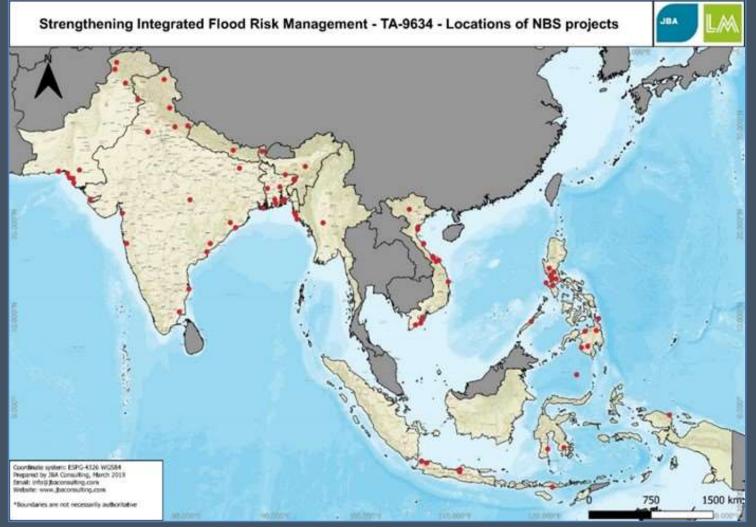
			Coastal Flo	od Statistics			
Country	Total Population	Popula	ntion At risk	Population Defended			
	(million)	No	% of Population	No	% of those at Risk		
Bangladesh	165	36.1	21.9	7.8	21.7		
Indonesia	274	3.8	2.3	0.7	18.7		
Nepa1	29				-		
Pakistan	221	0.3	0.2	0.02	6.7		
Philippines	110	3.4	2.1	0.1	3.8		
Viet Nam	97	10.5	6.4	1.1	10.9		
	895	54	6%	10	18%		

Source of data: Consultant Analysis using GTSR 2016 and JBA Defences

Flood Infrastructure

Different components

- Hard defenses river embankments, flood channels/floodways
- Urban management storm drains, storages, pump stations etc.
- Soft Measures flood warning systems and dissemination, planning, land management & restoration and NBS
- Flood Response evacuation, shelters, recovery & Insurance


Flood Infrastructure Expend relative to GDP and loss (AAL)

	CAPEX	:GDP	CAPEX: AAL	
Country	CAPEX (US billions 2015)	Capex/GDP	Historic AAL	Capex/AAL
Bangladesh	0.007	0.00%	2,953	0.24%
India	1.5	0.05%	9,359	16.03%
Indonesia	0.5	0.04%	2,411	20.74%
Myanmar			2,039	
Nepal			143	
Pakistan	0.009	0.00%	1,055	0.85%
Philippines	1.1	0.29%	7,159	15.37%
Vietnam	0.1	0.04%	2,371	4.22%

Source of data: JICA RI (2020) Bridging the Gaps in Infrastructure Investment for Flood Protection in Asia. Paper 203 Mikio Ishiwatari and Daisuke Sasaki

Flood Infrastructure

Soft: NBS and Catchment Measures

Source of data: Consultant review of published project data

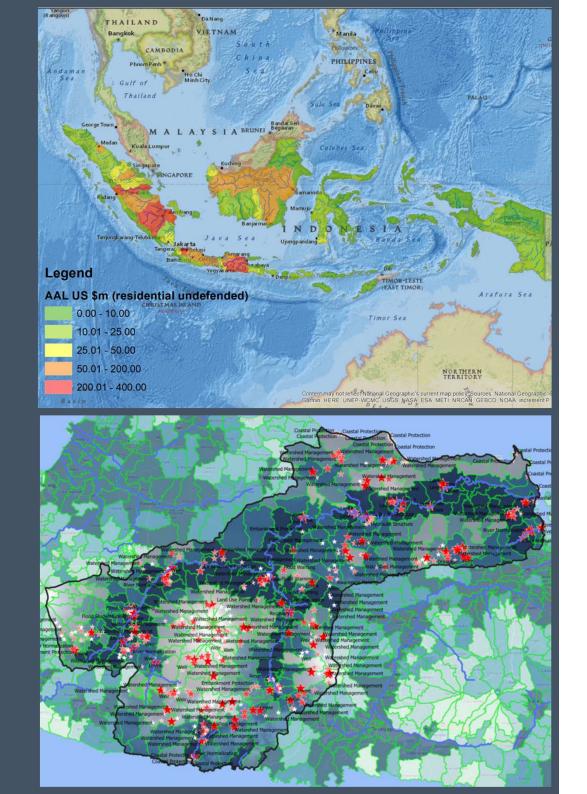
Flood Risks – Are we getting the balance right?

Source: Phare Cambodia

Integrated Flood Risk Management – Change

Scope for improvement – sample of benchmarking

	Category	Bangladesh	India	Indonesia	Myanmar	Nepal	Pakistan	Phillipin es	Vietnam
	Population with some defences (% of Population at Risk)								
URE	Population defended 50y+ (% of Population at Risk)								
	Application of NBS or similar soft solutions - rivers								
ASTRUCI	Coastal NBS or similar soft solutions								
INFRA	CAPEX Index								
11/21	OPEX Index								
FLOOD	Storages Operated for Flood Risk Reduction	•							
	Flood Monitoring & Warning Systems								


Source of data: Sector Assessment Benchmarking. Green= Best of Sample yellow is median performance Red = Low Achievement Black= Not available/applicable.

COUNTRY-WIDE PRIORITIZATION FOR FLOOD INVESTMENT

Development of a *National Integrated Risk Analytics (NIRA) Tool* for assessing flood risk and ranking solutions

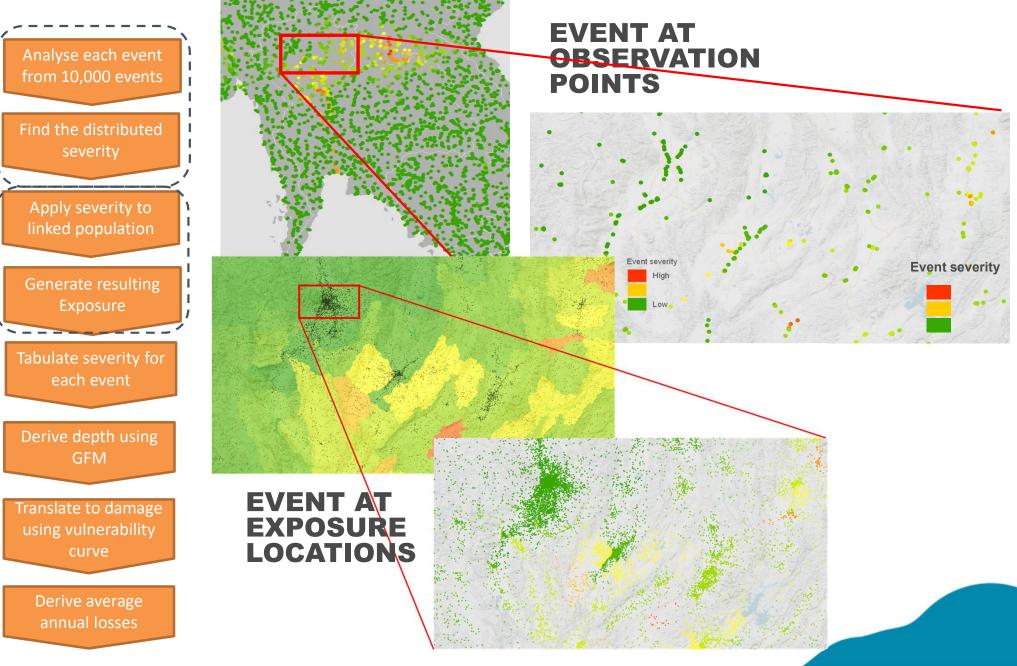
Contents

- What is NIRA?
- NIRA at a national scale
- How it works
- Benchmarking
- Risk reduction scenarios
- Weighing-up strategic spatial IFRM scenarios
- Capacity building + National GIS Database
- Prioritising budgets with NIRA and other datasets including the Road Map
- Translates to the ground in Solo with the IFRM prioritisation recommendations
- The process helped <u>Integrate NIRA with</u> <u>existing hazard data and local knowledge</u> and made for a more informed prioritisation process

What is NIRA?

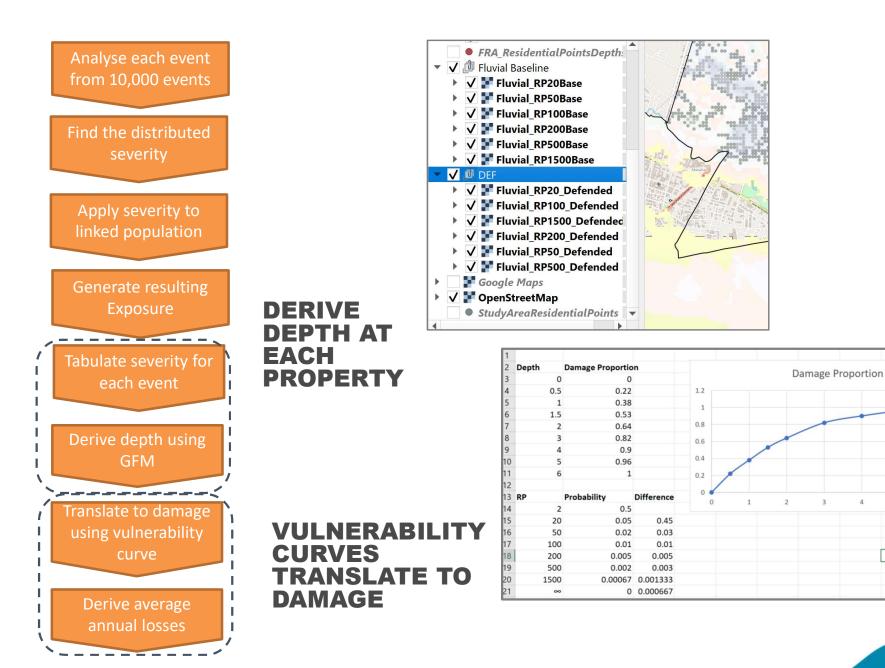
NIRA stands for National Integrated Risk Analytics, which we have used to:

- Understand National scale distribution of flood risk for Indonesia
- Understand the potential risk-reduction based on <u>Integrated</u> flood <u>Risk</u> management measures
- Provide <u>Analytics</u> of what-if scenarios at a strategic, birds-eye level

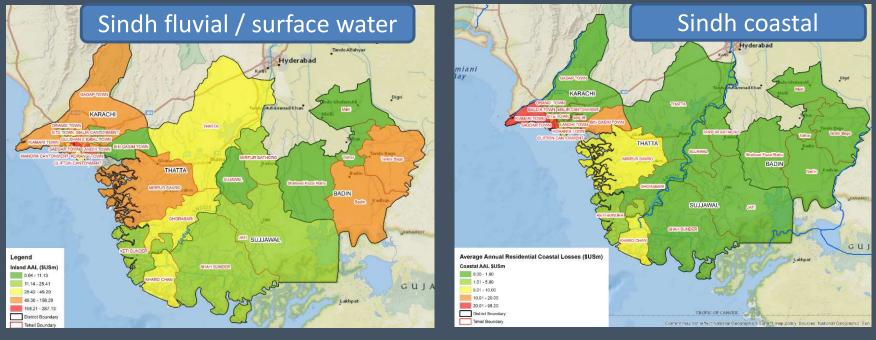

What Data does NIRA use?

 NIRA uses JBA software FLY to undertake probabilistic risk calculations with some key high-resolution datasets:

- JBA's 30m resolution flood hazard library for 6 probabilities (5%, 2%, 1%, 0.5%, 0.2% and 0.07% AEP)
- Covers both surface water and fluvial flooding
- Facebook 30m resolution population data used for disaggregating different exposure data such as property and people
- Census data at administrative levels 2 and 3
- Vulnerability curves by census house-type based on JRC approach
- JBA Global Event Set of tens of thousands of spatially realistic synthetic storms
- We then aggregate back up to the larger scale looking at national, river basin territory, district and sub-district scales



landell-mills.com



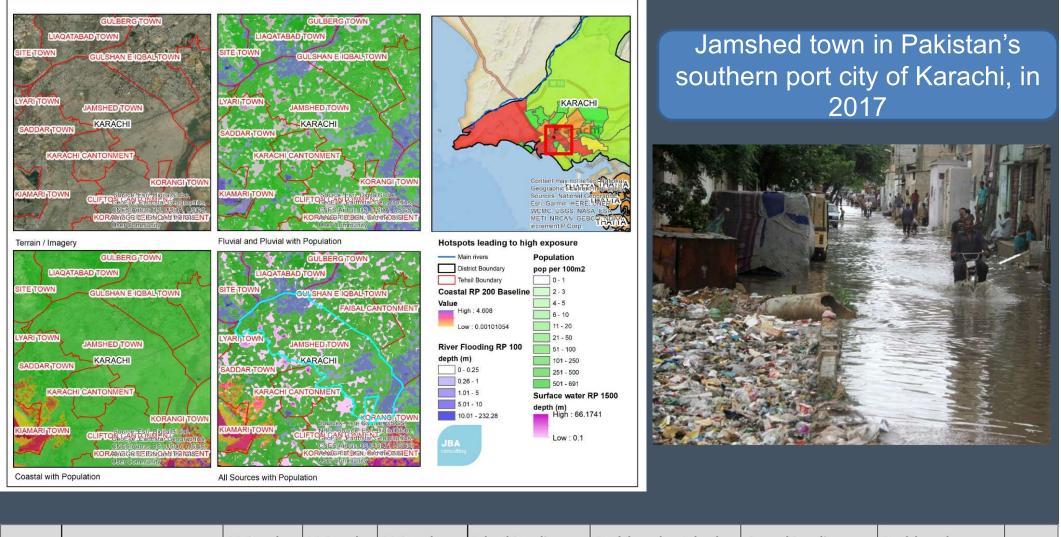
National Assessments of Risk

TA 9634-REG: Strengthening Integrated Flood Risk Management

Distribution of risk: Average Annual Losses (residential)

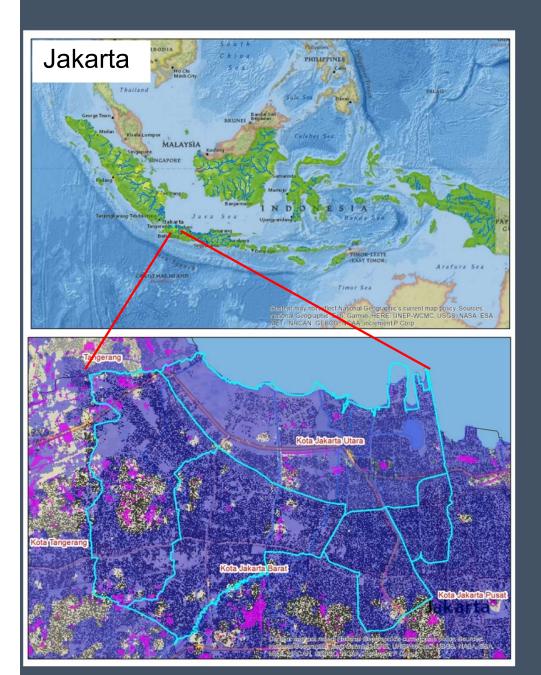
Comparisons with other national risk assessments

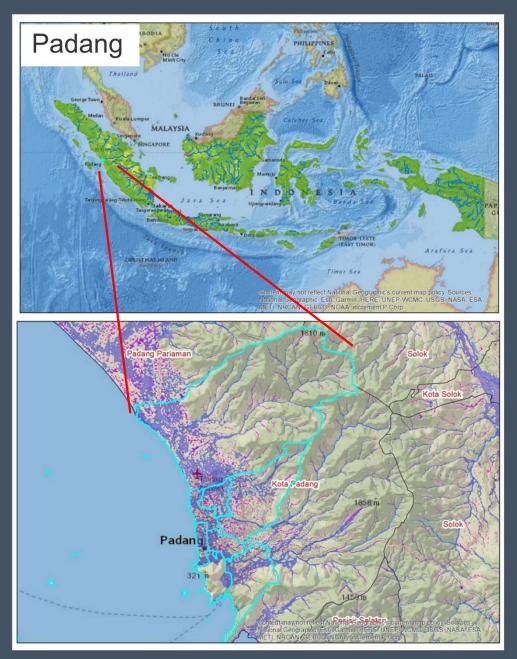
	Indonesia		
Source	Indonesia	Average Annual Losses from flooding (billion USD)	Assumptions
This study (res	idential losses)	3.6	Residential undefended
World Resourc Global Flood A	es Institute / Aqueduct nalyzer¹	3.7	All property, <mark>undefended</mark> (previous release)
World Resourc Global Flood A	es Institute / Aqueduct beta nalyzer²	4.9	All property, <mark>undefended</mark> new release of Aqueduct
This study with	JBA default defenses	2.9	Using estimated areas benefitting from defenses
GAR-15 ³ from s	sector assessment report	2.4	JBA Sector Assessment report (baseline defended)


Useful comparisons -...But NIRA is "bottom-up" and the starting point is high resolution data (30m)

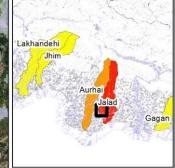
Nepal		Source Pakistan	Average Annual Residential Direct Losses from fluvial / pluvial flooding (billion USD)	Assumptions	
		This study (residential losses, fluvial and pluvial) (2021).	4.22	Residential ¹ undefended	
Source	Average Annual Losses from flo			Using estimated areas	
This study	44.5*	benefiting from defenses – these are approximate areas that considered to have	3.47	benefitting from defenses (spatially varied standard	
World Resources Institute / Aqueduct Global Flood Analyzer¹	28.6** Assuming a 2 year leve13.6 Assuming a 10 year leve	some level of protection at a national scale		of protection, JBA)	
PreventionWeb, 2014 ²	94.4 (National reports)	World Resources Institute / Aqueduct Global Flood Analyzer 2010 (Error!		Riverine / urban losses – estimated current flood	
World Bank, 2016 ³ EM-DAT estimates based on 30 years of data that	38.5 (EM-DAT refined hazard) 36.7 (EM-DAT refined hazard)	Reference source not found.)	1.6	protection 9 year Return Period	
includes hydrological and meteorological data that excludes cold snaps and avalanches		World Resources Institute / Aqueduct beta Global Flood Analyzer 2030 based on	9.3	Riverine / urban losses – estimated future flood	
		climate change projections (Error! Reference source not found.)		protection level 6.6 year Return Period	

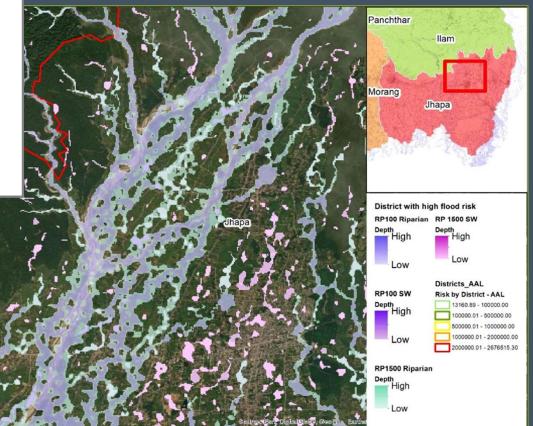
Prioritisation


		1			k Average Annu			Rank based on			Overall Priori	•••••••••••••••••									
	Nep	bal	er		households	AAHH at	1.000	and the second second second	1000000		nouseholds a										
	-		1752.05	12.5	s (HH) at risk	per km2		people	Losse	120	normalised b	y area)	-								
Jalad	244.9 340.5	429134.71 317686.07		1	377 582	1.5		2	7	3		2	-								
Budhi Aurhai	244.3	344906.09	933.08 1411.58	2	273	1.70		6		8			-								
Lakhandeh		299311.28	869.08	7	418	1.1		5		12			-							Sindh	
Biring	369.3	338743.44	917.29	6	302	0.8		7		13		5	-							Shun	
Ratuwa	380.9	375818.32	986.73	4	266			-			1	1	-								
Mohana	412.4	447274.14	1084.51	3	277					Average Annua	Average Annual	Fluvial Baseline			Fluvia	l Defended	Fluvial with Average Anr		Fluvial with EWS Average Annual	Coastal Baseline	Coastal with Future
Bakraha	398.0	326131.62	819.46	9	305					Count of	Count of People	Undefended Aver		Fluvial Defended	10 year) (100 ye	ear) Average	Residential	F	Residential	Average Annual	Mangrove Average
Gagan	210.6	181018.70	859.56	8	160	PROVINCE	DISTRICT	TEHSIL		People flooded (Fluvial)	flooded (Coastal)	Annual Residentia Losses (Per Capita		Average Annual Re Losses (Per Capita		l Residential (Per Capita)	Losses (Per			Residential Losses (Per Capita)	Annual Residential Losses (Per Capita)
Khando	161.3	80507.35	499.25	15	240	SINDH	SUJAWAL	KHARO CHAN		1030	318	3 \$ 3,0	600.06	\$	3,600.06 \$	2,671.52		15.37	\$ 2,796.38	\$ 2,689.95	\$ 2,355.13
Lal Bakeya	849.0	401214.18	472.57	17	1075	SINDH	THATTA	KETI BUNDER JAMSHED TOWN		838			701.97 652.73		2,701.97 \$ 130.96 \$	1,369.20 130.96		77.01	\$ 2,099.88 \$ 2,099.20	\$ 2,736.13 \$ 4,695.10	\$ 1,808.58 \$ 4,695.10
Jhim	206.6	133446.96	645.90	12	146	SINDH	KARACHI	KORANGI CREEK CAN	NTONME	1092			592.22		73.86 \$	73.86		75.68	\$ 2,061.40		
Chisang	364.6	237746.77	652.14	11	249	SINDH	KARACHI	FAISAL CANTONMEN	NT .	5623			519.11	\$	178.78 \$	178.78		72.32	\$ 1,979.83		\$ -
Chaudhar	362.6	271537.46	748.81	10	154	SINDH	KARACHI KARACHI	LANDHI TOWN		5313			434.51 291.33	\$	55.95 \$ 188.84 \$	55.95 188.84		09.30 01.15	\$ 1,908.54 \$ 1,833.24		\$ - \$ -
East Rapti	3100.7	1894923.92	611.12	13	1686	SINDH	KARACHI	SITE TOWN		6950		3 \$ 2,3	276.33	\$	218.48 \$	218.48		85.97	\$ 1,822.39	\$ 3,593.36	\$ 855.24
Kamal	119.3	63632.64	533.57	14	45	SINDH	KARACHI SUJAWAL	KORANGI TOWN SHAH BUNDER		10850			072.21 805.11	\$	147.89 \$ 1,805.11 \$	147.89 118.86		60.76 96.50	\$ 1,656.33 \$ 1,434.08	\$ 4,440.93 \$ 2,363.25	\$ 4,004.84 \$ 1,944.41
Dodha	850.0	415062.18	488.28	16	325	SINDH	KARACHI	LYARI TOWN		2581			676.55	\$	87.72 \$	87.72		25.62	\$ 1,380.75	\$ 4,183.42	\$ 643.42
Banganga	956.7	411905.67	430.54	19	394	SINDH	KARACHI	GULBERG TOWN	014/41	6149			604.13	\$	417.16 \$	417.16		51.52	\$ 1,362.19		
Balan	471.8	213808.60	453.19	18	159	SINDH	KARACHI KARACHI	GULSHAN E IQBAL TO GADAP TOWN	UWN	5828			482.96 475.89	\$	146.69 \$ 567.43 \$	146.69 567.43		87.91 41.25	\$ 1,201.07 \$ 1,169.49		\$ - \$ -
Khutia	328.1	135321.94	412.43	20	77	SINDH	BADIN	Badin		6943) \$ 1,4	454.86		1,454.86 \$	1,454.86	\$ 1,16	69.05	\$ 1,133.69	\$ -	\$ -
Kankai	1300.1	376528.59	289.63	21	259	SINDH	BADIN KARACHI	Tando Bago KIAMARI TOWN		6527			438.87 404.33	\$	1,438.87 \$ 254.61 \$	1,438.87 254.61		29.99 06.23	\$ 1,121.78 \$ 1,127.90	\$ 4,454.77	\$ - \$ 1,840.00
Kandra	473.1	123636.43	261.31	22	87	SINDH	THATTA	MIRPUR SAKRO		5696	223		396.58	\$	1,396.58 \$	1,361.51	\$ 99	92.45	\$ 1,086.79	\$ 2,491.81	\$ 2,303.79
West Rapti		1505552.92	235.52	24	1046	SINDH	KARACHI THATTA	KARACHI CANTONM GHORABARI	ENT	1505			309.42 281.46	\$	442.18 \$ 1,281.46 \$	442.18 641.37		98.07 71.21	\$ 1,149.34 \$ 1,000.18	\$ 6,989.09 \$ 2,704.81	\$ 6,989.09 \$ 1,262.57
Narayani	28682.3	7243670.94	252.55	23	3746	SINDH	THATTA	GHORABARI		3392	<u> </u>		ACC 70	·	1,281.40	041.37		98.08	\$ 999.40		\$ -
Karnal	Nai	me		Basin		AAL (\$US) R	ank based on	10000	erage Annu		Households	Aver	rage Annual	Rank of Pe			17.91 38.58	\$ 1,121.48 \$ 960.84		\$ 3,564.99 \$ -
						5.5		AAL	Hous	seholds at r		at risk	Peo	ople at risk	at risk	S	core 3	33.16			
			WS CILIWU		NE	\$392,443		1			155	1		344157	1			05.13			\$ -
WS	BRANTAS		WS BRANTA	45		\$305,010		2		76	300	2		280448	2			07.41 91.89			\$ - \$ -
WS	BENGAWA	AN SOLO	WS BENGAN	WAN SOLO		\$213,044	1,890	4		52	569	3		189726	4		11 0	03.33	\$ 661.88	\$ 3,307.42	\$ 3,206.34
WS	CITARUM		WS CITARU	M		\$165,649	9,310	7		52	353	4		195855	3			67.36 56.39	\$ 579.74 \$ 586.03		\$ - \$ -
WS	MUSI-SUG	GIHAN-BANYU	WS MUSI-SI	UGIHAN-BA	ANYUASIN-	\$209,745	-	5		42	786	5		172814	5		15 0	04.43	\$ 518.34	\$ -	\$ -
WS	JRATUNSE	LUNA	WS JRATUN	ISELUNA		\$99,914	1,337	11		36	219	6		130748	6			06.17 23.64	\$ 402.65 \$ 358.13		\$ - \$ -
WS	CIMANUK	-CISANGGARL	WS CIMANU	JK-CISANG	GARUNG	\$103,116	5,294	10		29	769	7		108843	7			32.54	\$ 320.06		\$ 4,625.07
WS	BARITO		WS BARITO	X.		\$115,509	9,315	8		28	603	8		107862	8			09.78			\$ -
WS	KAPUAS		WS KAPUAS	6		\$167,606	5,472	6		22	899	10		97848	9			05.22 79.66			<u>\$</u> - \$-
WS	INDRAGIR	I-AKUAMAN	WS INDRAG	GIRI-AKUAN	1AN	\$242,606	5,272	3		16	132	12		66976	12		27	-	\$ -	\$ 5,186.40	\$ 5,123.45
WS	PEMALI-C	OMAL	WS PEMALI	-COMAL		\$52,929	9,416	17		23	991	9		95998	10		36				
WS	SERAYU-B	OGOWONTO	WS SERAYU	-BOGOWO	NTO	\$77,527	7,615	14		22	166	11		81932	11		36				
WS	MAHAKAN	N	WS MAHAK	AM		\$94,169	9,577	12		15	997	13		63705	14		39				
WS	BATANGH	ARI	WS BATANO	GHARI		\$106,850	0,411	9		13	957	15		56064	15		39				
WS	BELAWAN	I-ULAR-PADAN	WS BELAW	AN-ULAR-P	ADANG	\$83,618	3,276	13		15	521	14		65784	13		40				
WS	CITANDU	(WS CITAND	UY		\$60,427		16		12	290	16		42750	16		48				
WS	PROGO-O	PAK-SERANG	WS PROGO	-OPAK-SER	ANG	\$35,919		20		11	596	17		40971	17		54				
		SEKAMPUNG				\$33,880		21			427	19		36844	19		59				
	SAMBAS		WS SAMBA			\$40,078		18			527	22		32351	22		62				
		CIUJUNG-CID			G-CIDURIAN	\$33,510		23			633	20		36438	20		63				
		JDO-BEDADU				\$32,476		24			021	18		35265	21		63				
	SIAK		WS SIAK			\$63,331		15			571	24		27258	24		63		Indo	nesia	
	JENEBERA		WS JENEBEI	RANG		\$27,147		25			551	21		36928	18		64				
	ROKAN		WS ROKAN			\$36,272		19			047	25	1	25560	25		69				
						<i>450,212</i>	-,	1.7		0				20000	25						


Exploring baseline risk - Sindh Province

			AA People		AA People	AA People		Inland Baseline	Rank based on Inland	Coastal Baseline	Rank based on	
			Count		Count	Count	(Inland	Undefended AA	Baseline Undefended AA	Average Annual	Coastal Baseline AA	Overall
D	ISTRICT	TEHSIL	(Inlan	d)	Coastal	and Coastal)		Residential Losses	Residential Losses	Residential Losses	Residential Losses	Rank
К	ARACHI	JAMSHED TOWN		10824	40		10864	28713142	1	187804	15	3

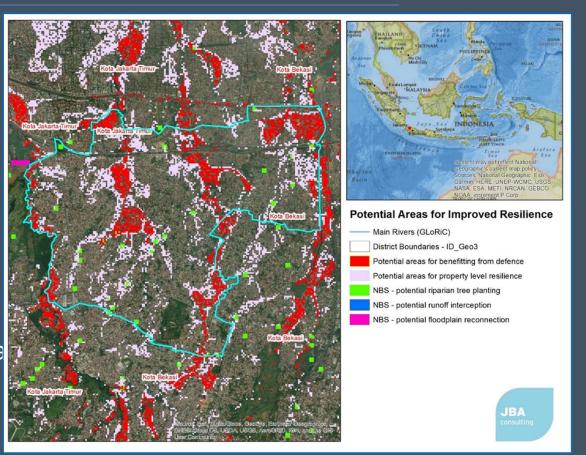

Exploring (baseline) risk - Indonesia


Exploring (baseline) risk - Nepal

Priority River Basins with high flood risk RP1500 Riparian SAAL / Shape_Area Depth High Priority_Basins 0.000 - 746800 746900 - 5391000 Low 5392000 - 9589000 9590000 - 15770000 15780000 - 28640000 RP 1500 SW **RP100 Riparian** Depth Depth High High Low Low

RP100 SW Depth High

Modelling residual risk Potential areas for Integrated Flood Risk Management


- We modelled four kinds of IFRM nationally and computed the reduction in risk:
 - New embankments or defences
 - Areas of high risk have been identified
 - Property Level Resilience
 - Improved building type/flood-proofing
 - Flood Warning Areas
 - People are more prepared to rescue valuables or escape
 - **Nature Based Solutions**. These are split into:
 - **1**. Floodplain reconnection (room for river, etc)
 - 2. Runoff interception through storage
 - 3. Runoff interception through riparian tree planting

Integrated Flood Risk Management measure scenarios

- Each IFRM scenario required four steps:
 - 1. Conceptualisation
 - 2. Mapping potential areas (for IFRM) based on risk data
 - 3. Adjustment to risk calculation
 - 4. Re-run probabilistic calculation
- The next slide shows each of these steps for the one component of IFRM with maps and screenshots from the new national IFRM analysis tool

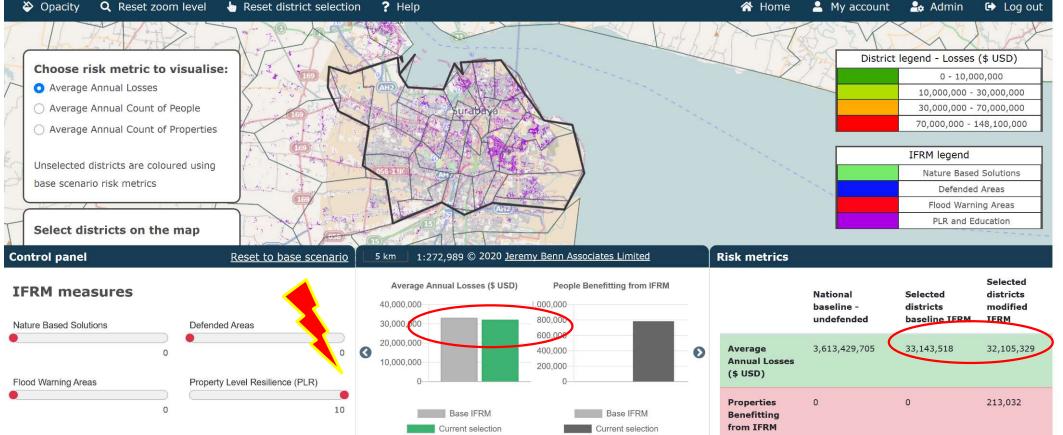
How have we created potential Areas (example uses defended areas)

- Conceptualise
 - Based on areas of high risk (>1% AEP fluvial), where there is a high population (>10 per 100m²) density good to prioritise!
- Mapping
 - Potential defended areas are shown in **Red**
- Adjust Risk
 - The DEF areas were given a *Standard of Protection* of 1% AEP in the risk calculation
- Re-compute
 - Adjust Risk

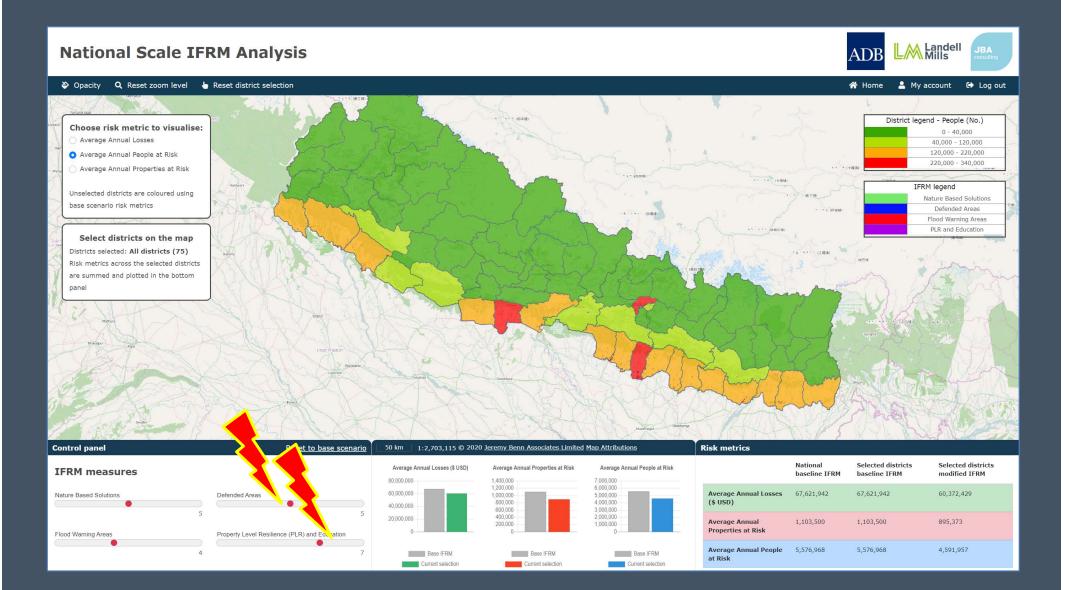
Baseline + adjusted risk (representing IFRM) are then compiled and stored spatially so strategies can be browsed interactively on the NIRA website...

NIRA - Indonesia

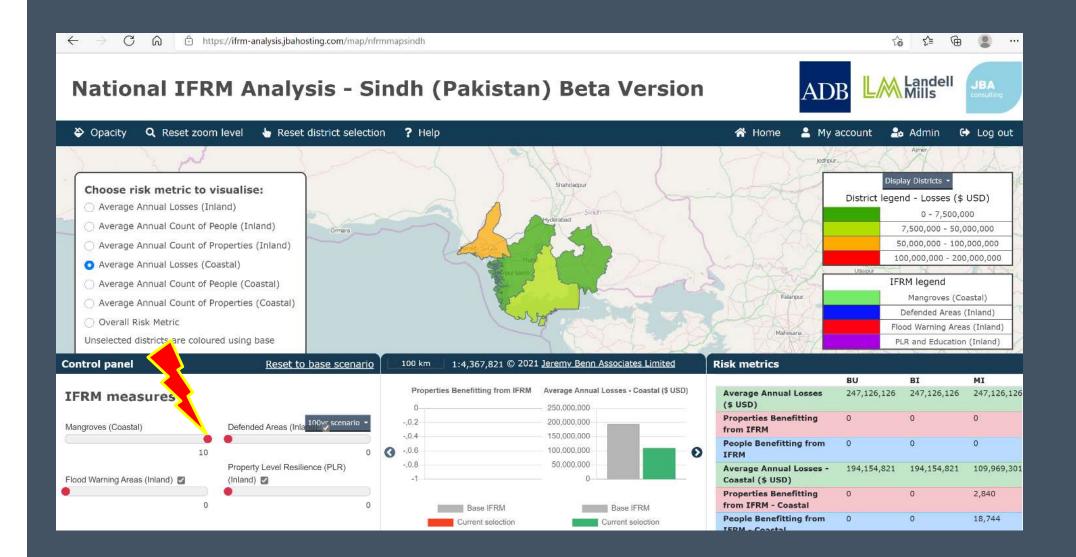
Adjust risk & re-run calculation e.g. Threshold 1m depth since JRC curves with the 'no-damage until 0.5m. 50% reduction of all damages up to 1.5m 40% reduction up to 3m & then 20% above that


Risk Calculation:

This makes a smaller difference


In places like Surabaya there is a 3% reduction in overall risk

National Scale IFRM Analysis - Indonesia


ADB Landell JBA

Exploring the NIRA portal: Nepal

NIRA – Sindh Province

landell-mills.com

Using NIRA for the prioritization of IFRM investments

TA 9634-REG: Strengthening Integrated Flood Risk Management

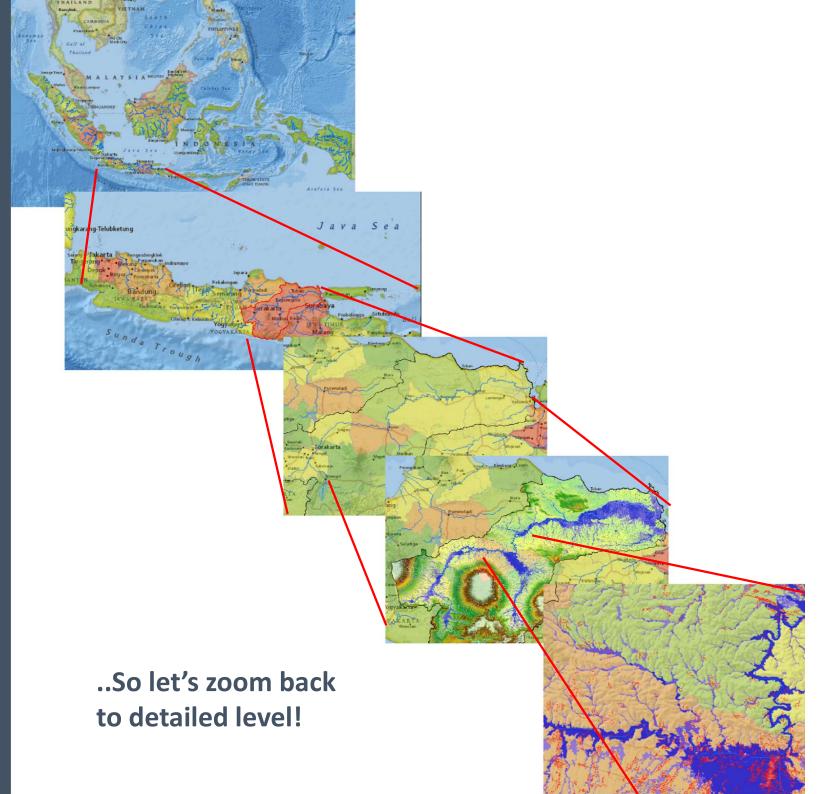
Framework to prioritise FRM investments in Indonesia

- Developed for the Sub Directorate of Rivers and Coasts under Directorate General of Water Resources in the Ministry of Public Works and Housing in Indonesia.
- Prioritization method that integrates a range of tools and datasets to identify higher areas of flood risk, and shortlist proposed schemes based on available annual budget.
- Draft methodology has been handed over to the Sub directorate for testing in Solo catchment

Identifying priority for investments in FRM in Indonesia

National GIS database of proposed FRM investments (>7000 interventions)

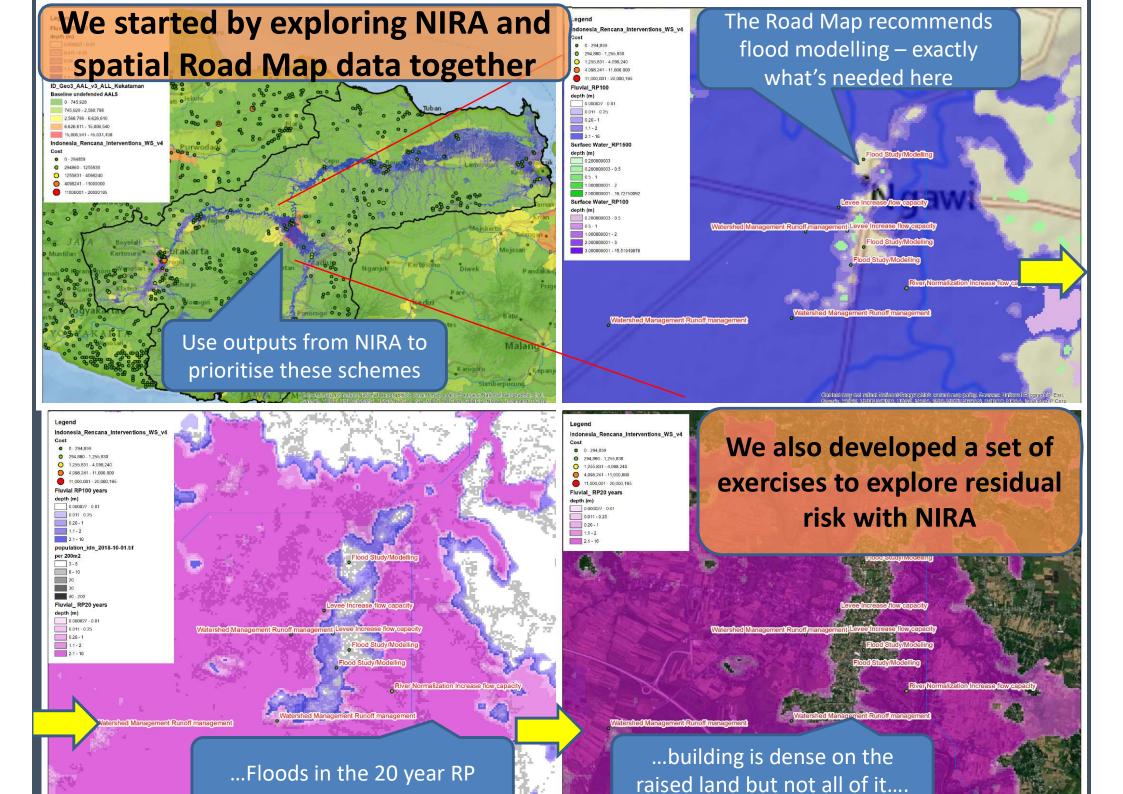
National Integrated Risk Analytics **NIRA Tool**


Global datasets and local datasets

Needs assessment

Training program on range of tools and techniques for prioritization Methodology for annual screening, establishing criteria and integration of data sources

Prioritization


National scale risk estimates are based on bottom-up, high resolution hazard and population data

Integration of Road Map and Overall risk ranking across different flood risk metrics from NIRA

How does this compare with existing plans?

Name	Basin	AAL (\$US)	Rank based on AAL	Average Annual Households at risk	Rank of Households at risk	Average Annual People at risk	Rank of People at risk	Overall Score
WS CILIWUNG-CISADANE	WS CILIWUNG-CISADANE	\$392,443,887	1	89155		344157	1	3
WS BRANTAS	WS BRANTAS	\$305,010,934	2	76300	2	280448	2	6
WS BENGAWAN SOLO	WS BENGAWAN SOLO	\$213,044,890	4	52569	3	189726	4	11
WS CITARUM	WS CITARUM	\$165,649,310	7	52353	4	195855	3	14
WS MUSI-SUGIHAN-BANYU	WS MUSI-SUGIHAN-BANYUASIN-I	\$209,745,840	5	42786	5	172814	5	15
WS JRATUNSELUNA	WS JRATUNSELUNA	\$99,914,337	11	36219	6	130748	6	23
WS CIMANUK-CISANGGARU	WS CIMANUK-CISANGGARUNG	\$103,116,294	10	29769	7	108843	7	24
WS BARITO	WS BARITO	\$115,509,315	8	28603	8	107862	8	24
WS KAPUAS	WS KAPUAS	\$167,606,472	6	22899	10	97848	9	25
WS INDRAGIRI-AKUAMAN	WS INDRAGIRI-AKUAMAN	\$242,606,272	3	16132	12	66976	12	27
WS PEMALI-COMAL	WS PEMALI-COMAL	\$52,929,416	17	23991	9	95998	10	36
WS SERAYU-BOGOWONTO	WS SERAYU-BOGOWONTO	\$77,527,615	14	22166	11	81932	11	36
WS MAHAKAM	WS MAHAKAM	\$94,169,577	12	15997	13	63705	14	39
WS BATANGHARI	WS BATANGHARI	\$106,850,411	9	13957	15	56064	15	39
WS BELAWAN-ULAR-PADAM	WS BELAWAN-ULAR-PADANG	\$83,618,276	13	15521	14	65784	13	40
WS CITANDUY	WS CITANDUY	\$60,427,801	16	12290	16	42750	16	48
WS PROGO-OPAK-SERANG	WS PROGO-OPAK-SERANG	\$35,919,550	20	11596	17	40971	17	54
WS SEPUTIH-SEKAMPUNG	WS SEPUTIH-SEKAMPUNG	\$33,880,075	21	9427	19	36844	19	59
WS SAMBAS	WS SAMBAS	\$40,078,409	18	7527	22	32351	22	62
WS CIDANAU-CIUJUNG-CID	WS CIDANAU-CIUJUNG-CIDURIAN	\$33,510,113	23	8633	20	36438	20	63
WS BONDOYUDO-BEDADU	WS BONDOYUDO-BEDADUNG	\$32,476,399	24	10021	18	35265	21	63
WS SIAK	WS SIAK	\$63,331,465	15	6571	24	27258	24	63
WS JENEBERANG	WS JENEBERANG	\$27,147,846	25	8551	21	36928	18	64
WS ROKAN	WS ROKAN	\$36,272,224	19	6047	25	25560	25	69

Combining strengths

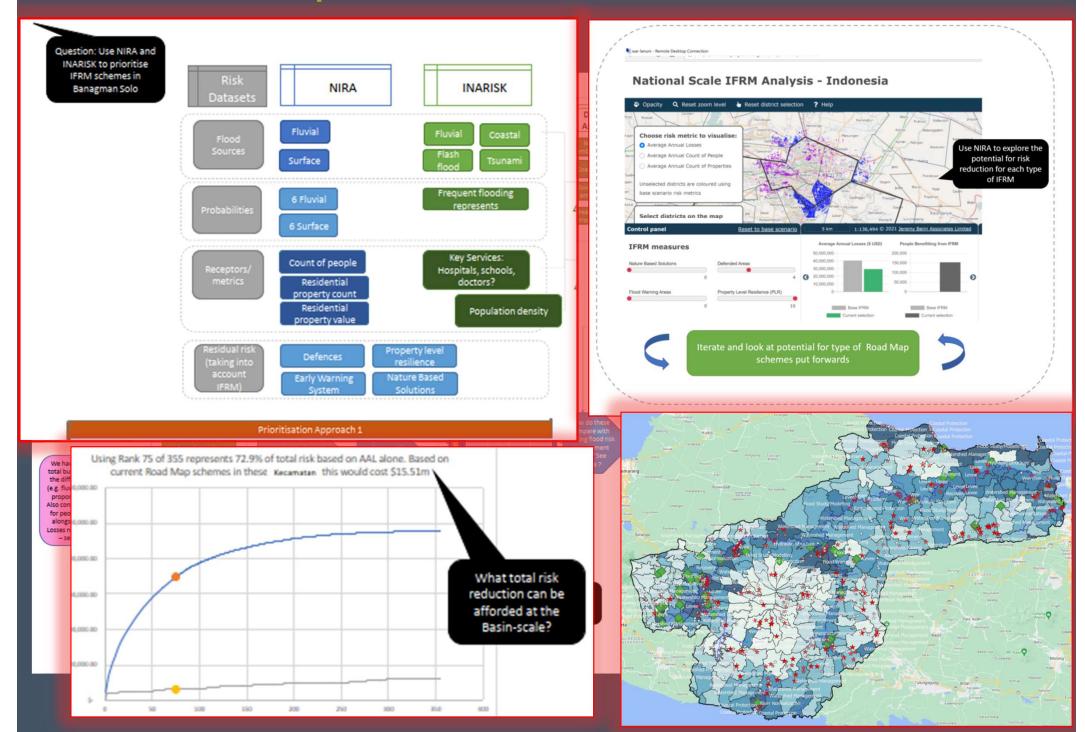
..Just using NIRA

..using NIRA + INARISK

igh

nd

Source / metric Osses people households (hospitals) Huvia NIRA NIRA NIRA NIRA NIRA Source / metric Osses people households (hospitals) Huvia NIRA NIRA NIRA NIRA NIRA Source / metric Osses people households (hospitals) Huvia NIRA NIRA NIRA NIRA NIRA Source / metric Osses people households (hospitals) Huvia NIRA NIRA NIRA NIRA NIRA Source / metric Osses nonseholds (hospitals) NIRA Source / metric Nirak NIRA NIRA NIRA NIRA Source / metric Nirak Nirak Nirak Nirak Nirak Nirak Source / metric Nirak Nirak Nirak Nirak Nirak Nirak Source / metric Nirak Nirak Nirak Nirak Nirak Nirak Source / metric Nirak
Purvial NIRA NIRA NIRA NIRA NIRA NIRA NIRA NIRA
Image: Control of the second of the secon
Tigure 7 This kekatman in Solo (Pacitan) is very his risk from tsunanti we want to keep
Image: Comparison of the comparison
Figure 7 This kekatman in Sole (action) is very his from tsuname.
Figure 7 This kekatman in Solo (Pacitan) is very his from tsunami wave and fluvial - were trained wave from the same trained w
Figure 7 This kekatman in Solo (Pacitan) is very his from tsunami wave and fluvial - were trained wave from the same trained w
Wind Wang Wang Wang Wang Wang Wang Wang Wang
Wind Wang Wang Wang Wang Wang Wang Wang Wang
sense version and the sense version of the sense ve
sense version and the sense version of the sense ve
sense version and the sense version of the sense ve
sense version and the sense version of the sense ve
nagement r koma kriterie r koma kriter
ment Protection and the second and t
Watershell Management (with Management) and a set of the set of t
Witersteid Management 2 Witersteid Witersteid Management 2 Witersteid Witerste
people, losses and
Puterer Watershol Management
Wen prioritising
better Verlagten Hangemen Werenhed Management
Costal Protection, and Annual Annua


8. y.

٩.,

-0

....We developed a range of ways of prioritising schemes

Prioritisation process

Summary

- Starting at the national scale we developed national estimates of baseline risk and residual risk assuming uptake of a range of IFRM
- We built a new tool, NIRA, to allow users to interactively assess this risk at the admin 2/3 level
- The Indonesian Government asked us to use this to help prioritise schemes using NIRA
- Following consultation and working with technical teams we undertook capacity building on a test catchment
- The final prioritisation process includes using NIRA, but also brings in other data and local knowledge
 - Without the consultation and technical knowledge aspects of risk, and local priorities would not have been captured

Thank you

Discussion questions

 Does the comparison across countries help inform a sense of priority for IFRM issues?

2. How are areas within a country prioritized for investment in IFRM?

3. Does the NIRA tool developed in the project assist with making decisions on the location and type of investments?

Application of an IFRM approach at a River Basin Level

A Practical Guide on real-world issues for IFRM in urban and rural settings. Discussion on relevant issues for ADB projects.

See you next week!

For recordings and any follow up questions, please access the event site at the ADB Knowledge Events in Development Asia https://events.development.asia/learning-events/challengeslessons-and-innovations-strengthening-integrated-flood-riskmanagement