ADB TA Project

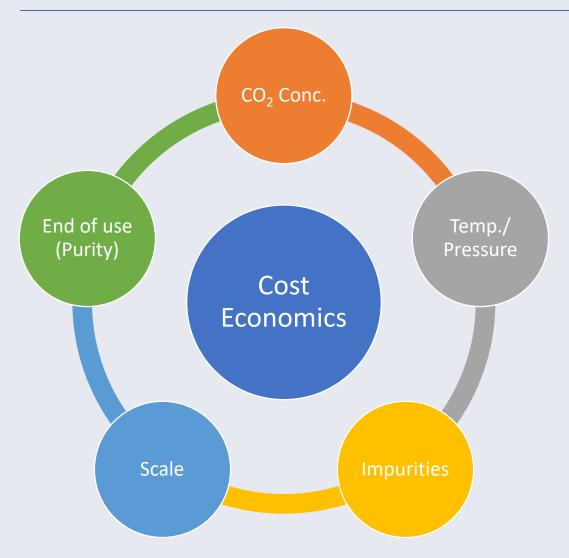
Prefeasibility Study on Carbon Capture and Utilization in Cement Industry of India

Prepared by

BCS Baliga Ramesh Bhujade Subhamoy Kar Guido Magneschi V Karthi Velan Dewika Wattal Jun Zhang Finance Specialist CO₂ Utilisation Specialist Civil Engineering Specialist CO₂ Capture Specialist Environment Specialist CO₂ Capture Specialist Team Leader and CO2 Utlisation Specialist

Part 1: Carbon capture

Devika Wattal



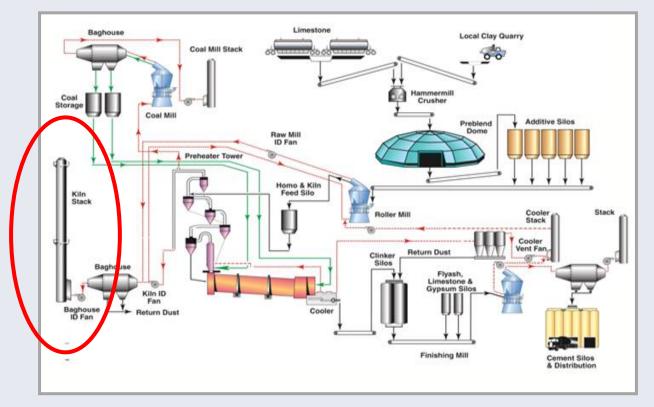
Key Findings

- Increased interest for CCS in the cement industry.
 - Process emissions (60%) & Combustion emissions (40%)
 - First of its kind study in India
 - CO₂ concentration in flue gas is low (not a typical case)
- Research landscape points towards active work in CCS in cement industry
 - Lowering emission from the cement plant
 - energy efficiency improvement
 - alternative fuel/raw material use
 - clinker substitution.
 - CO₂ capture technologies
 - Post-combustion and oxyfuel combustion are most relevant for cement industry.
- R&D activity in lab, pilot and demo scale:
 - Norcem CO₂ (absorption with amines, chemical adsorption, membranes)
 - CEMCAP (Calcium looping, membranes, Chilled ammonia process, oxyfuel)
 - Lafarge Holcim (CO2MENT, oxyfuel)
- Amine technology most mature among post-combustion processes
 - Tested and validated at commercial scale (TRL 8)
 - Easily retrofittable

Cost Effective CO₂ Capture

Key Ingredients

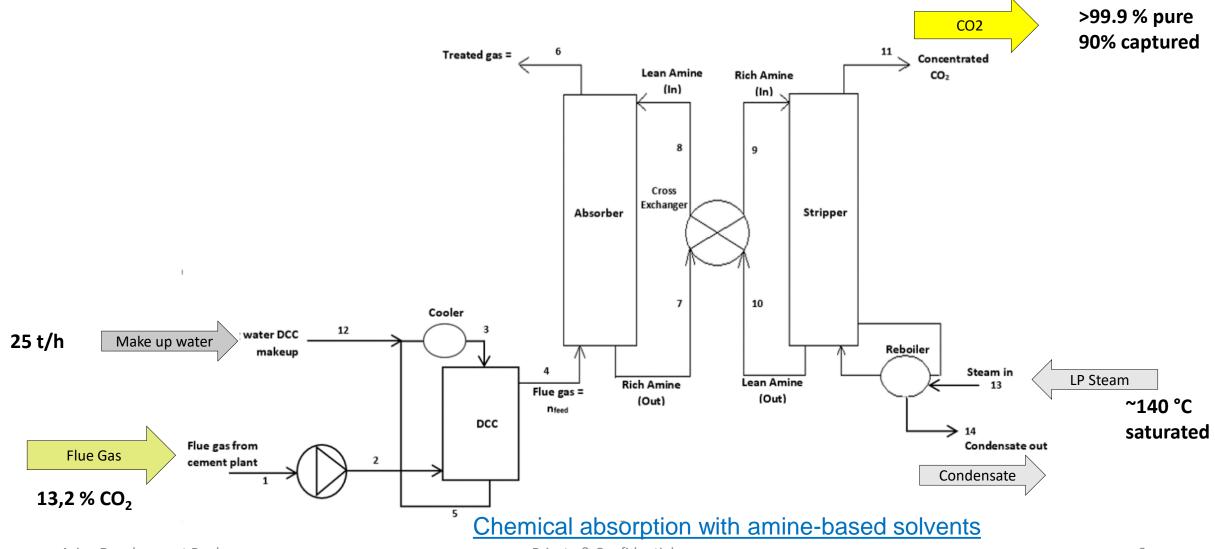
- Low CO₂ concentration
- High temperature
- High NO_x & SO_x emissions
- Scale
- CCUS route


Government, Industry and Finance community – Collaboration Critical

Recommendation to use an amine-based CO_2 capture plant for flue gases from the kiln stack

- Most mature and well demonstrated (TRL -8)
- Capture at low partial pressure of CO₂
- High capture efficiency
- High selectivity at low partial pressure
- Easily retrofit

Ariyalur Plant Emission



Parameters	Units	Direct (Raw mill stop condition)	Indirect (Both Raw mill & Kiln Running)
Oxygen (O ₂)	%v/v	13.15	13.60
Carbon Dioxide (CO ₂)	%v/v	13.20	12.75
Nitrogen (N ₂)	%v/v	71.15	70.65
Carbon Monoxide (CO)	ppm	160.00	139.00
Sulphur Dioxide (SO ₂)	ppm	8.00	3.00
Oxides of Nitrogen (NO _x)	ppm	170.00	161.00
Temperature	К	385	357
Pressure	mmHg	748	748
Moisture	%v/v	2.5	3
Flow rate	Nm³/hr	635,292	685,119

Space availability for CO₂ capture and Utilization, **100 x 100 m²** plot, located on the west side of the Cement Mill MCC room (site layout)*

Total Direct CO ₂ Emissions (all fossil CO ₂ sources)	[t CO ₂ /yr]	1,536,293	1,552,242	-> CO ₂ capture plant designed for 0.5Mtpa
--	-------------------------	-----------	-----------	---

CO₂ Capture Conceptual Design - PFD

Private & Confidential

ADB

Design parameters	value	unit
Flue gas flow	290000	Nm3/h
CO ₂ concentration in flue gas	13,2	% vol
Capture rate	90	%
CO ₂ capture capacity	68	t/h
Plant availability	85	%
Yearly captured amount	~500.000	t/y
CO ₂ purity	>99.9	%wt
Process requirements		
Heat input (coal 11 t/h)	66	MWth
Power input	12,5	Mwel
Make up water	25	t/h
Solvent use (MEA-30%)	756	t/y

• Conservative estimates based on MEA technology – leading to high estimates, especially for OPEX

Cost Estimations

- CAPEX: 5.800 MINR (+/- 30% uncertainty)
- OPEX: 1.491 MINR/y
 - Steam
 - Electricity (air cooling mainly)
 - Water
 - Solvent
- Cost reduction opportunities:
 - Heat integration with hot flue gas
 - Reduce steam cost and make up water
 - Steam sourcing from captive plant
 - Reduce steam costs
 - Better solvent than MEA
 - Better performance (and may reduce solvent cost)
- Sensitivity to cost
 - CO₂ concentration (higher CO₂ concentration)
 - Production volume
 - Utility cost

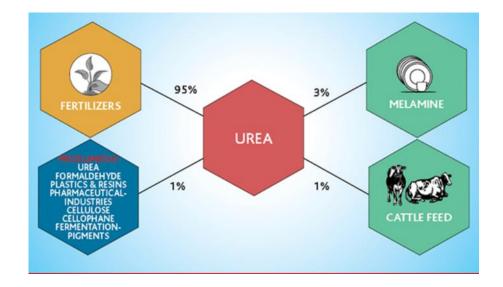
From the financial model*: Total cost of CO₂ Capture - \$56/tCO₂

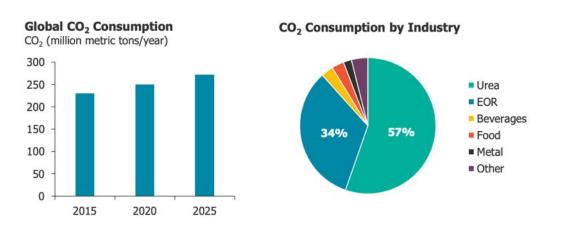
* Mr. Baliga to discuss the details of the financial model.

Part 2: CO₂ Utilization Project – Prefeasibility CO₂ to Urea

Ramesh Bhujade

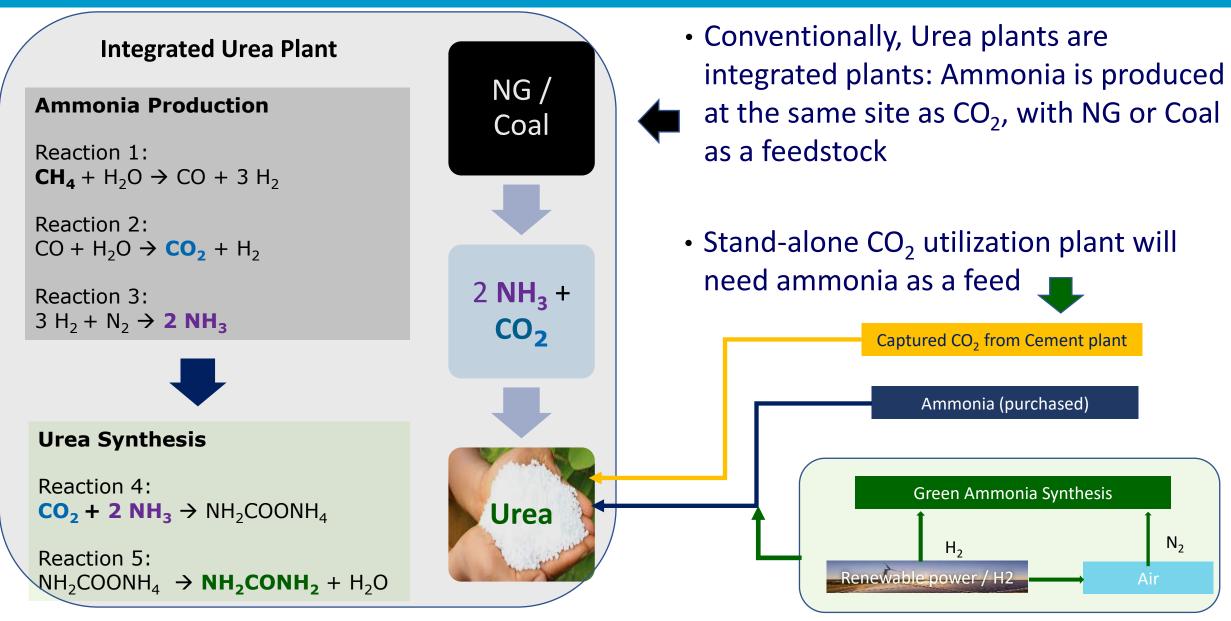
Asian Development Bank


Private & Confidential


Presentation Outline

- Urea: Product and Technology Overview
- How is Urea selected as CO₂derived product ?
 - Approach
 - Multi Criteria Analysis
 - Product Selection
- Urea Cost: Sensitivity analysis
- Summary

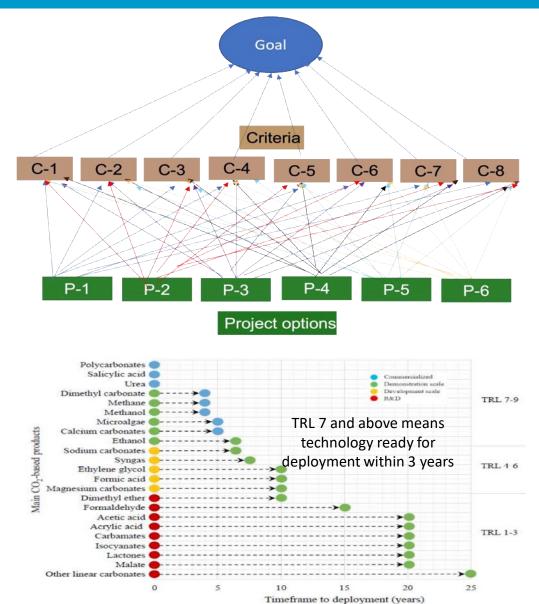
Urea and CO₂ Utilization



- Urea, also known as *Carbamide* (NH₂CONH₂)
- Fertilizer industry is the largest consumer
- Has 46% N₂, the highest available in any solid fertilizer
- Easily transportable, no explosive hazard
- Leaves *no salt residue after use* on crops
- Use of Urea in construction industry has been examined to mitigate thermal and shrinkage cracking in concrete.
- Global CO₂ consumption is projected to grow to 272 million tons per year, driven by urea production & EOR application

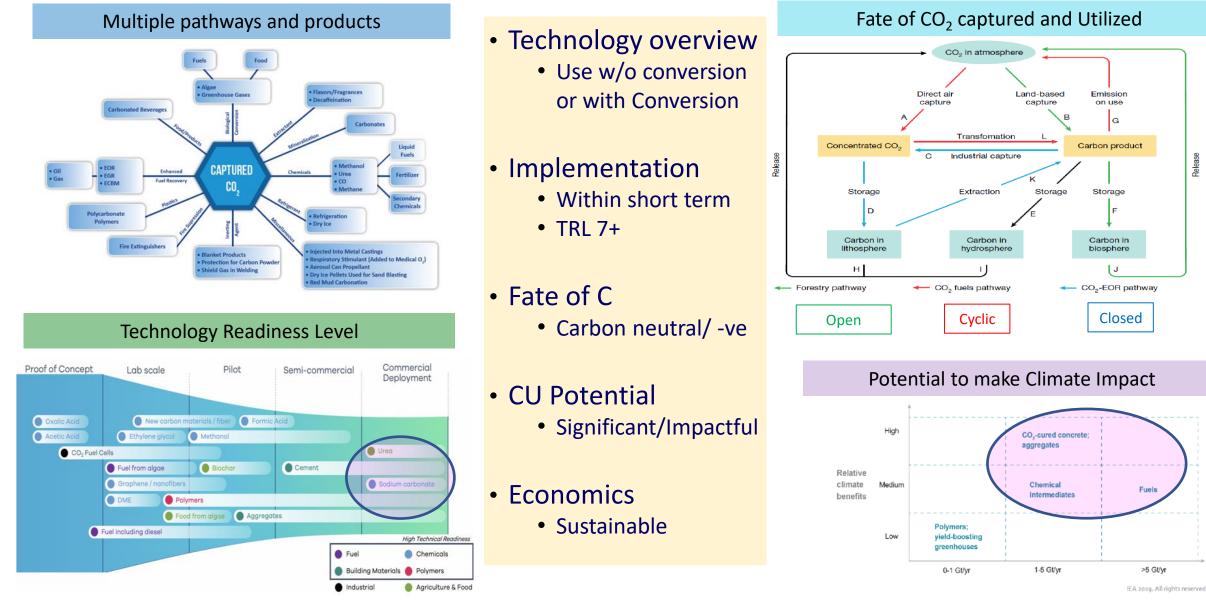
Source: IEA 2019

Urea production using CO₂ is a proven technology. Implementable option without any technical risk


Urea chemistry

Large scale plants are operational, with technology optimized over the decades for resource optimization and process safety

How Is Urea selected ? Multi Criteria Analysis (MCA)


#	Parameter	Weightage
1	TRL (7 and above)	40
2	Capex, INR/t CO ₂	10
3	Opex, INR/t CO ₂	10
4	ROI/Payback time	10
5	Market Demand	13
6	Electrical, kWh/t CO ₂	8
7	Steam, GJ/t CO ₂	4
8	Avoidance of CC	5
	Total Score	100

Source: Remi Chauvy et. Al. 2019

Economic parameters and TRL contribute over 70 % of the total weightage

CO₂ Utilization Selection Approach

Graphic Sources: pl refer to detailed report

Technology Review, Screening & Criteria-based Quantitative Selection. Multiple pathways make product selection more challenging

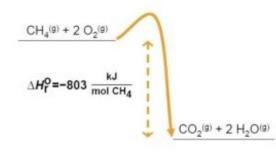
Projects under evaluation – Tech features

#	Description	Urea	Soda Ash	Mineralization	Methanol	Algae feed	Algal Biocrude
	Process	Generic	Modified Salvay	Carbonation	Hydrogenation	Photosynthesis	PS+HTL
	Tech Status	Commercial	Commercial	Commercial/Demo	Pilot plant	Pilot plant	Pilot plant
1	TRL	9	9	8 to 9	7 to 9	5 to 8	5 to 8
2	CO ₂ purity	High purity	High purity	10-100%	High purity	10-100%	10-100%
3	Major feedstocks	NH ₃	Brine, NH ₃	Mineral/residues	H ₂	Nutrients	Catalyst
5	Market Demand	++	+ Large	Very large +++	+++	++	+++
6	Electrical Demand	Yes	Yes	Yes	Yes	Yes	Yes
7	Steam Demand	Yes	Yes	Not essential	Yes	Not essential	Not essential
8	Avoidance of CC	No	No	Possible	No	Possible	Possible
9	Unique features	Govt. subsidies on product pricing. Low GHG reduction potential	Low GHG reduction potential	High GHG reduction regulatory reqts. Double benefits: Product replacement and CO ₂ permanent removal	Low C carrier of H2 in liquid form. Wide applications as fuel/ feedstock. "Renewable power, the Key"	Effluent/non- potable water (Large water handling) Large land area (non-agri)	Additional flexibility with HTL. No drying of feed. Co-processing of different wastes possible

MCA – *Individual* Score for CO₂ Utilization projects

#	Parameter	Weightage	Urea	Soda Ash	Mineralization	Methanol	Algae feed	Algal Biocrude
1	TRL	40	40	40	38	36	32	32
2	Capex (\$/t CO ₂)	10	10	7	7	10	4	5
3	Opex (\$/t CO ₂)	10	9	10	9	1	3	3
4	Payback period	10	10	7	9	4	9	9
5	Market Demand	13	7.8	5.2	9.1	13	7.8	13
6	Electrical Demand	8	6.4	5.6	5.6	8	4	4
7	Steam Demand	4	3.6	2	4	4	4	4
8	Avoidance of CC	5	2.5	2.5	5	2.5	5	5
	Overall Score	100	89.3	79.3	86.7	78.5	68.8	75
	Technology aspects w.r.t. India	Water, land availability, any advantage or barrier technology	NH ₃	Sea water, NH ₃	In sync with Dalmia business Regulatory requirement	Country-wide market, Big policy support from Gol	Technology availability in India with cost benefits	Technology in advanced stage available. Other waste can be co- processed

Urea and Mineralization are top-ranking options for short term implementation


CO₂ to Urea: Cost Sensitivity Analysis

Description	Units	Base Case	Advanced Case	Steam cost impact	CO ₂ cost impact
Captured CO ₂ consumption	Mn t/year	A = 0.5	2A = 1.0	2 A	2 A
NH ₃ required	Mn t/year	B = 0.386	2 B	2 B	2 B
Urea plant capacity	tpd	C = 2050	2 C = 4100	2 C	2 C
Steam Cost	\$/t	D	D	1.25 D	D
CO ₂ cost	\$/ t	E	E	E	1.4 E
Орех	\$ /t of Urea	F	0.98 F	0.989 F	1.05 F
Сарех	\$ / tpa CO ₂	G	1.54 G	1.54 G	1.54 G
Impact/Observations		2050 tpd Urea plant is sub - optimum capacity	Doubling the capacity increases capex by only 54%	25% higher steam cost increases opex by < 2 %	40% increase in CO ₂ cost increases opex by < 5%

- Ammonia is the main cost determinant. Contributes about 70% towards opex of Urea. Steam/electricity combination can be optimized to suit the site conditions
- Detailed financial assessment covered separately by the Finance Specialist
- LCA has been covered in the detailed report by the Environment Specialist

Summary

Thermodynamics of CO_2 CO_2 , the stable compound

Source: Chris Venter 2021 et. al, Brudermüller, 2019

Multiple CO₂ Utilization pathways at various TRL:

- CO₂ utilization w/o conversion, Bioconversion, Electrochemical conversion, Chemical/Catalytic conversion, Mineralization
- Hundreds of publications with varying benefits as claimed by technology developers, makes CO₂-derived product selection challenging
- Multi-Criteria analysis (MCA) helped decide most suitable CO₂ utilization strategy.
- Major criteria, as set for pre-feasibility: TRL (7 plus), Economic viability, Market potential and GHG reduction potential
- Technology pathways & products short listed:
 - Soda ash, Urea, Mineralization, Methane, Methanol, Algae,
- Products ranking through MCA and client-specific requirements
 - Short term: Urea, Soda ash
 - Medium term: Mineralization, Methanol
 - Long term: Algae to fuel and feed

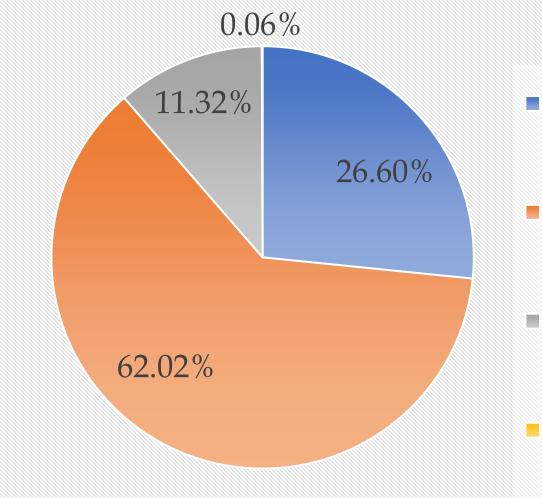
MCA model developed by ADB consultant team can be used as a tool for screening of CO₂ utilization technologies

Part 3: Financial assessment

B. C. S. Baliga

Asian Development Bank

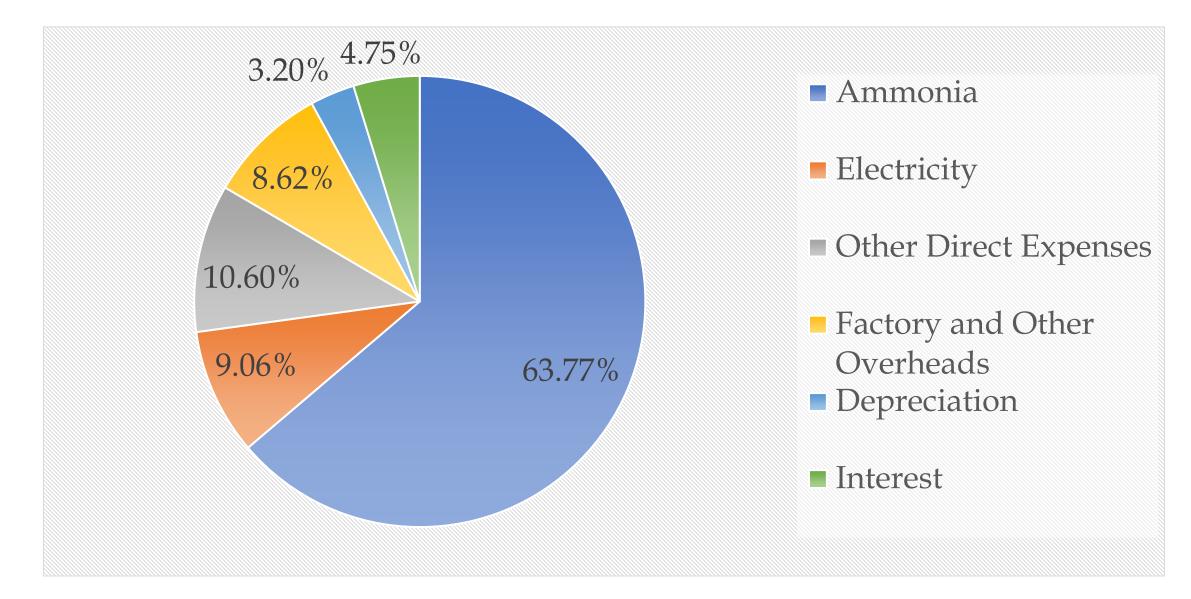
Private & Confidential

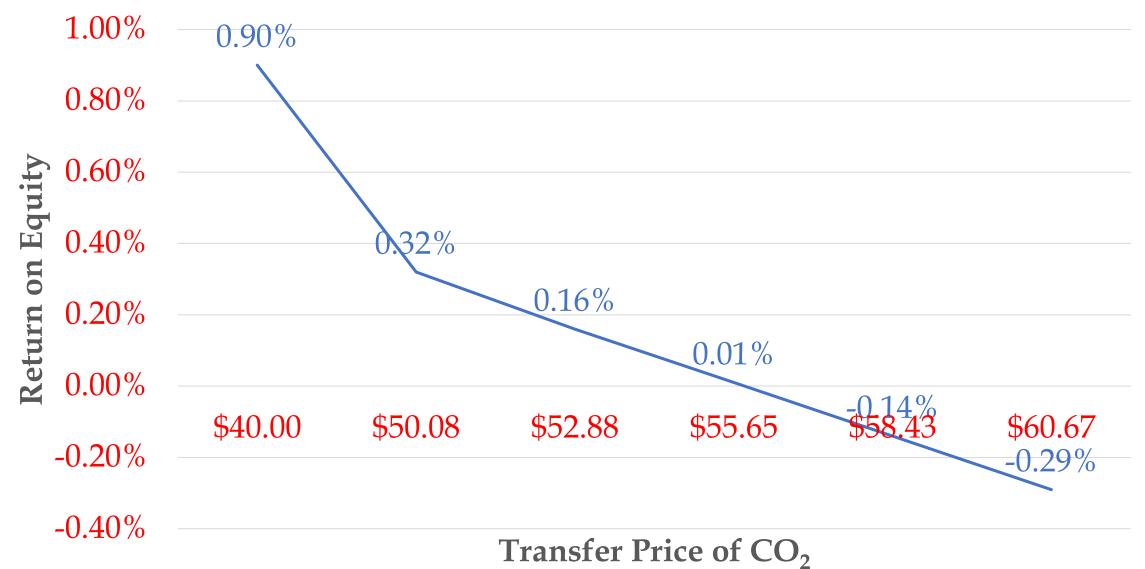

Values of Variables in Base Case

	Variable	Value
1	Capacity of the Project	Conversion of 0.5 MTPA CO_2 to urea
2	CAPEX & OPEX	As furnished by the concerned specialists of the Team
3	Construction period	3 years
4	Inflation rate	4% per annum
5	Expected rate of return on equity (Equity IRR)	20.00% per annum
6	Rate of interest on term loan	12% per annum
7	Debt / Equity ratio	70:30'
8	Customs Duty	29.8% including Goods & Services Tax
9	Depreciation	15% of Written Down Value
10	Price of Electricity	As per the latest tariff published by the Tamil Nadu Generation & Distribution Corporation Limited, <i>i. e.</i> demand charge of \$4.84 per KVA per month and usage charge of \$0.09 per unit
11	Sale Price of Urea	\$270 per ton
12	Other Income	Nil

Estimate of the Rate of Return Expected on Equity

SL. NO.	EXPRESSION	EXPLANATION	VALUE	REMARKS
1	C	APM Formula	$R_{\rm E} = R_{\rm RF} + \beta * ({\rm F}$	R _M – R _{RF})
2	KE	Expected Rate of Return on Equity	20.48% (Rounded off to	Calculated Using the CAPM Formula
3	R _{RF}	Risk Free Rate of Return	6.77%	Yield on 10-year Government of India Bonds
4	ß	Measure of Volatility of the shares of Dalmia Bharat Limited vis-à-vis the market	1.57	Source: Economic Times
5	R _M	Market Expected Rate of Return	15.50%	

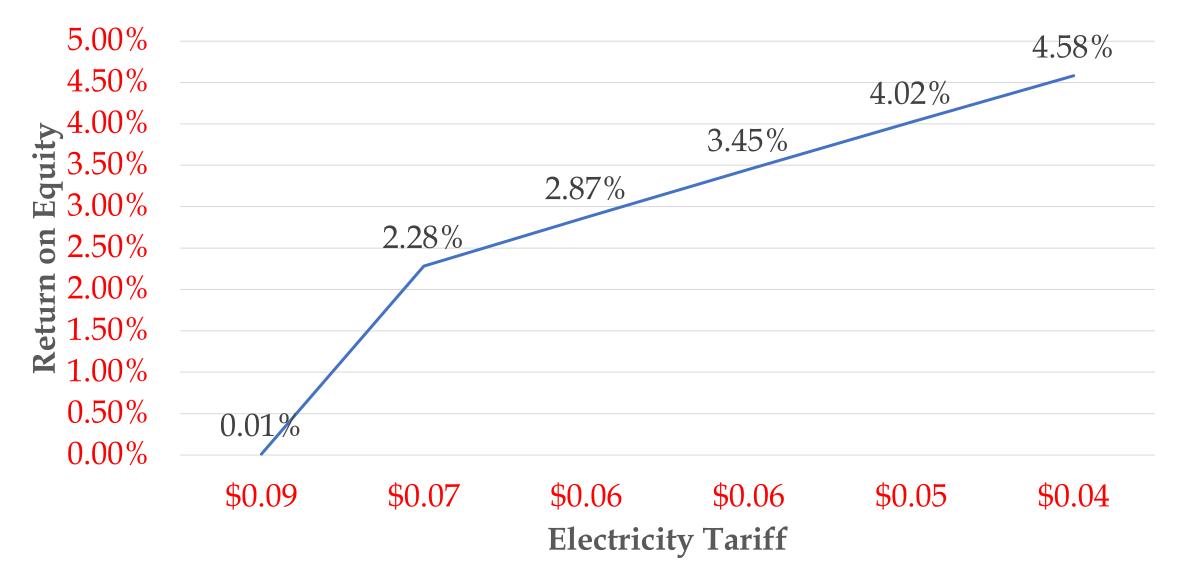

CAPEX Breakup


- CAPEX CO2 Capture Plant
- CAPEX CO2
 Utilization Plant
- Interest During Project Construction
- Cost for Arranging Finance

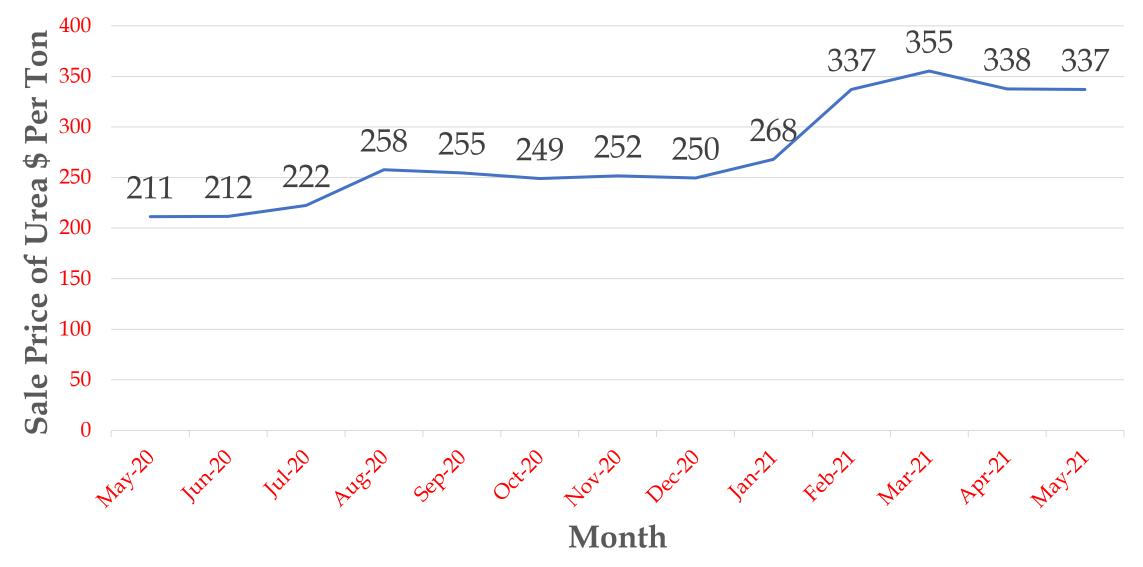
- CAPEX per ton of CO₂ converted: \$730.86
- CAPEX per ton of urea produced: \$537.40

Breakup of Urea Production Cost over Project Period

Sensitivity of ROE to Transfer Price of CO₂



Sensitivity of ROE to Price of Ammonia



Price of Ammonia

Sensitivity of ROE to Electricity Tariff

Movement of Urea Sale Price in India

Determination of Viability Gap Fund Required

Government Support for Urea Production

- GOI requires at least 75% of the urea produced by any urea manufacturer in India to be neem coated.
- GOI determines the price to be received by manufacturer for neem coated urea on cost plus basis to provide a reasonable return to manufacturer.
- All justifiable costs for manufacture are allowed in determination of price to be received by manufacturer.
- Price of sale to farmer is fixed at \$81.92 (INR5,922.22) per ton. The difference between price determined by GOI and price paid by farmer is borne by GOI by way of subsidy to manufacturer.

Key Findings

- Demand for urea in India outstrips supply. Hence, there is ready market for urea
- With urea selling price of \$330/ton and electricity tariff of \$0.04 per unit, project yields ROE of 20%. At lower selling price of urea, viability gap funding will be required to achieve ROE of 20%.
- Ammonia accounts for 63.77% of the production cost of urea including depreciation and interest. Reduction in cost of ammonia significantly improves ROE. Reduction in other components of OPEX will also improve ROE.
- Impact of reduction in CAPEX on ROE is comparatively less.
- Rate of interest on debt does not have significant impact on ROE
- Reduction in electricity tariff can significantly improve ROE.
- GOI provides subsidy for neem coated urea for ensuring reasonable return to the urea manufacturers

Summary of findings

Summary

• Capture

Technologically feasible to build and operate a 0.5 million tonnes per year(tpa) CO₂ capture plant, using chemical absorption with amine-based solvents. A conceptual design for an amine-based solvent carbon capture plant was completed with major equipment sizing and costing.

• Utilization selection

A quantitative Multi Criteria Analysis (MCA) methodology has been developed to assess various CO₂ utilization options.

• Emissions reduction

This study calculated CO_2 abatement(Scope 1&2) potential for several scenarios, based on a 0.5 million tpa carbon capture plant and corresponding urea plant. Different options can be used to reduce CO_2 emissions from the whole chain process.

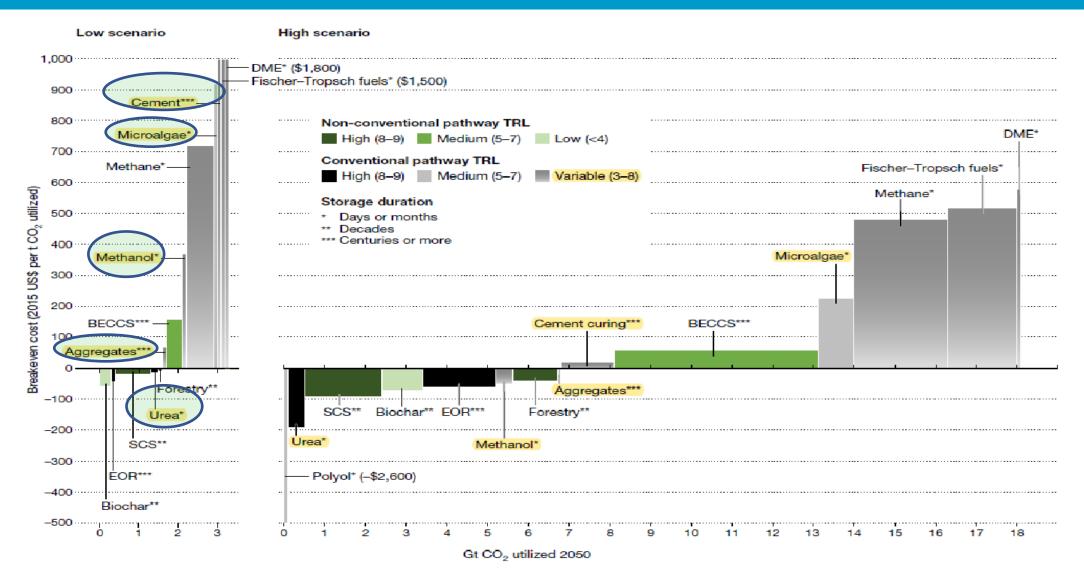
Summary – base case

Item	Quantity
Debt/Equity Ratio	70:30
Weighted Average Cost of Capital (WACC)	12.30%
Electricity price, INR/kWh	6.35
Steam price, USD per tonne (urea plant)	23.50
Urea sale price, USD(INR) per tonne	270 (19,519.06)
Carbon price, USD per tonne	0
CAPEX	US\$365.43 million(INR26,417.98 million)
OPEX(per annum)	US\$167.35 million(INR12,098.23 million)
Revenue, USD (INR) per annum	183.60 million(INR13,272.96 million)
NPV	Negative
IRR	0.01%
Carbon credit needed(biomass case), USD per tonne	85.80

Scenario	Total emissions, million tpa	Emissions reductions, million tpa (Scope 1 & 2)
Baseline (cement and urea business as usual without CCU)	2.18	N/A
CO ₂ capture from cement plant and ammonia as well as steam from fossil fuel	2.04	0.14
CCU with green ammonia and steam from fossil fuel	1.36	0.82
CCU with biomass boiler and ammonia from fossil fuel	1.47	0.71
CCU with biomass boiler and green ammonia	0.81	1.38

Disclaimer

This presentation is prepared as an account of work sponsored by Asian Development Bank (ADB). Neither ADB nor the author, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the author or ADB. The views and opinions of author herein do not necessarily state or reflect those of the ADB.


Thank You

Additional information

References (selective list)

- IEA 2019, Putting CO2 to Use Creating value from emissions
- Remi Chauvy et. Al. 2019. Selecting emerging CO2 utilization products for short to mid-term deployment. Applied Energy. Vol 236.
- Yara. 2018. Yara Fertilizer Industry handbook
- Dalmia Bharat Limited. 2020. Integrated annual report 2019-20
- Krysta Biniek et. al. 2020. Driving CO2 emissions to Zero (and beyond) with CCUS. McKinsey
- ADB 2020. CCUS game changes: A compendium of technologies and enablers webinar
- XPRIZE. 2021. https://www.xprize.org/prizes/carbon/teams
- Bhujade et. al. 2017. Algae to economically viable low-carbon-footprint oil. Annual review of chemical and biomolecular engineering. Vol 8: 335-357. <u>https://doi.org/10.1146/annurev-chembioeng-060816-101630</u>
- IEAGHG. 2017. Techno-economic evaluation of Hypo plant integrated to ammonia/urea or methanol production with CCS
- For other references, please refer to detailed ADB publication Aug 2021. https://www.adb.org/sites/default/files/project-documents/52041/52041-003-tacr-en.pdf

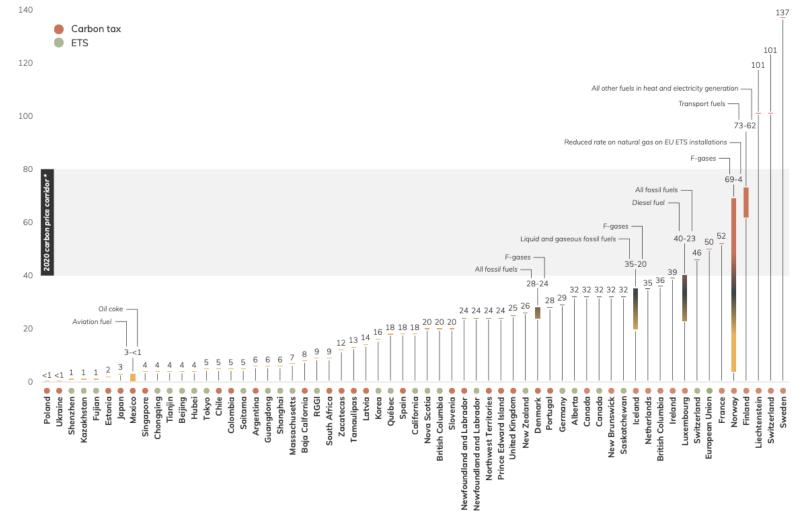
CO₂ Utilization: Breakeven cost for various pathways

Source: Adopted from Cameron Hepburn et.al, The technological and economic prospects for CO2 utilization and removal, Nature | Vol 575 | 2019

Country specific factors play important role in economics

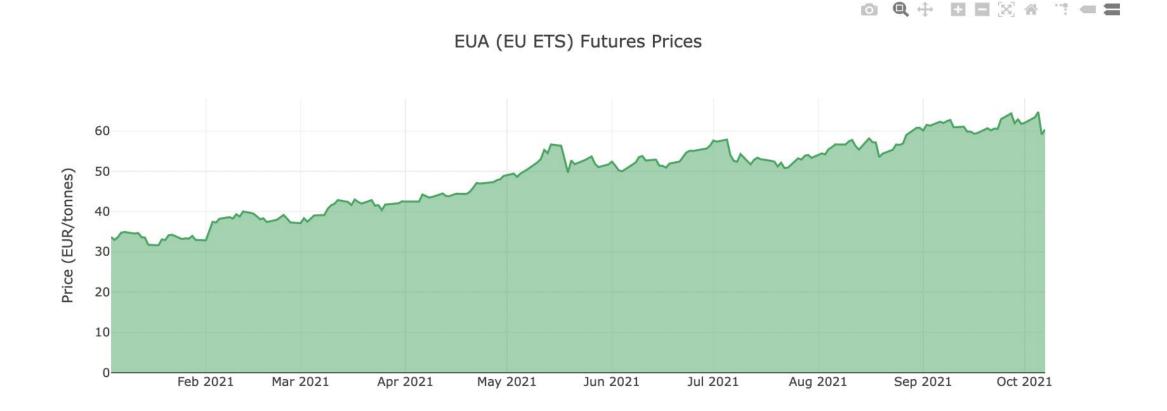
EXECUTIVE SUMMARY CO₂ utilization will be a \$550 billion dollar market by 2040, driven by the building materials sector

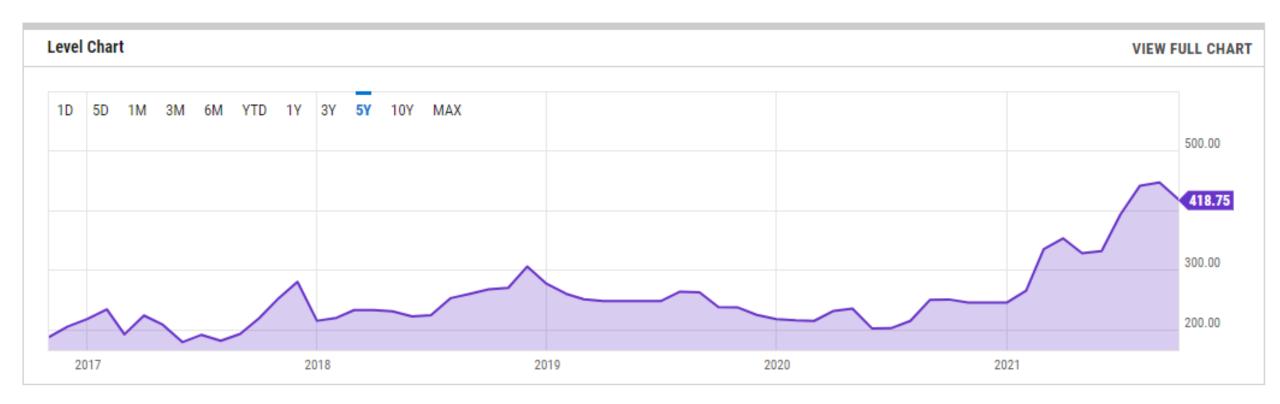
\$600 \$500 Carbon additives \$400 Protein Chemicals \$300 Polymers \$200 Fuels \$100 Building materials \$-2020 2025 2030 2035 2040


GLOBAL CO₂ UTILIZATION MARKET Market size (billion dollars, USD)

Carbon Prices in Different International Markets

- Market Based Mechanisms and Carbon Taxes are used to indicate the price of CO2 by governments
- Voluntary markets also provide signals on price
- Different prices help in determination of suitability of a mitigation action in that market
- Taking into account the revised RPO notification dated 14.06.2018, the three put together amount to a carbon tax of US\$ 9.71


Carbon prices as of April 1, 2021


Nominal prices on April 1, 2021, shown for illustrative purpose only. China national ETS, Mexico pilot ETS and UK ETS are not shown in this graph as price information is not available for those initiatives. Prices are not necessarily comparable between carbon pricing initiatives because of differences in the sectors covered and allocation methods applied, specific exemptions, and different compensation methods.

*The 2020 carbon price corridor is the recommendation of the World Bank's 2017 High-Level Commission on Carbon Prices Report.

Price of Carbon Under EU-ETS

International Price of Urea

