This is not an ADB material. The views expressed in this document are the views of the author/s and/or their organizations and do not necessarily reflect the views or policies of the Asian Development Bank, or its Board of Governors, or the governments they represent. ADB does not guarantee the accuracy and/or completeness of the material's contents, and accepts no responsibility for any direct or indirect consequence of their use or reliance, whether wholly or partially. Please feel free to contact the authors directly should you have queries.

THE POLICY ON REDUCING GREEN HOUSE GASES

Transformation towards green economy Post Pandemic COVID-19 as One of Indonesia Main strategies

Indonesia Economic Transformation

Qualified Human Resources

- Health system
- Education
- Research & Innovation

Green Econom

- Low carbon economy
- Blue Economy
- Energy transition

Strategy 5

Domestic Economy Integration

- Connectivity
 Infrastructure
- Domestic Value
 Chain

Strategy 2

Economic Productivity

- Enhance Industrial Sector
- Strengthening SMEs
- Modernize
 Agricultural Sector

Strategy 3

Strategy 4

Digital Transformation

- Digital Infrastructure
- Digital Utilization
- Enabler Strengthening

Moving the Capital City

- New source of development
- Balancing economy among regions

Green Economy

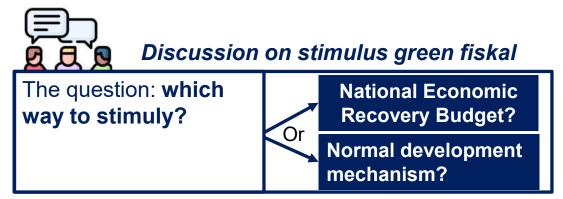
In principle, green economy is a development model that synergizes economic growth and environment quality enhancement.

Through the appropriate implementation, green economy provides tools needed for economic activities **transformation** to become more **environmentally friendly** and **inclusive**.

Game Changer

As One of Indonesia Main Strategies Post Pandemic COVID-19, particularly as game changer, green economy is a crucial matter and necessary to be initiated immediately

Green Fiscal Stimulus is one of the solutions as part of Build Back Better with Low Carbon Development (B3-LowCarbon)



B3-Low Carbon is a notion to implement the **Low Carbon Development (LCD)** as the base in **economic recovery**.

With B3-LowCarbon, economic recovery will overcome short term challenges, as well as become **the first enabler of Indonesian transformation towards green economy**.

In Factual, the implementation of B3-LowCarbon may be done through giving green fiscal stimulus to all activities that support low carbon development in the context of economic recovery, starting in 2022.

Which one is the most appropriate one?

Kebijakan penanganan Perubahan Iklim Sektor Pertanian di Indonesia dalam RPJMN 2020-2024?

National Priority

Priority Program

Policy Direction

Activities

PN 6: Membangun Lingkungan Hidup, Meningkatkan Ketahanan Bencana dan Perubahan Iklim

Low

Carbon

Develop-

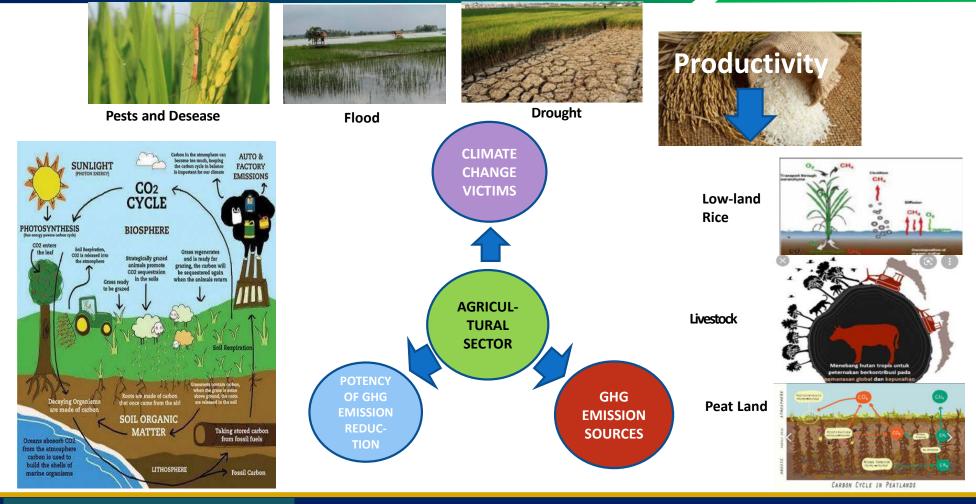
ment

Food security
protection to Climate
Change
(The percentage of
potential loss
reduction of GDP
caused by climate
change in agricultural
sector)

Sustainable land
Rehabilitation
(The percentage of rice
field area that has been
stipulated as
sustainable agricultural
land/LP2B)

- Climate change impact management and land and plantation/estates fire prevention
- Water conservation construction and climate anomaly anticipation
- Climate change adaptation technology
- Implementation Climate change impact Management
- Locations that acquire infrastructures for climate change management
- Enhancing public awareness on applied climate information through field school
- Climate change mitigation technology
- Land optimization
- Grazing pastures for livestock
- Organic fertilizer processing unit
- Organic agricultural village (plantation-based commodities)
- Land conservation and rehabilitation
- Recommendation for land protection and anticipation of agricultural land use change

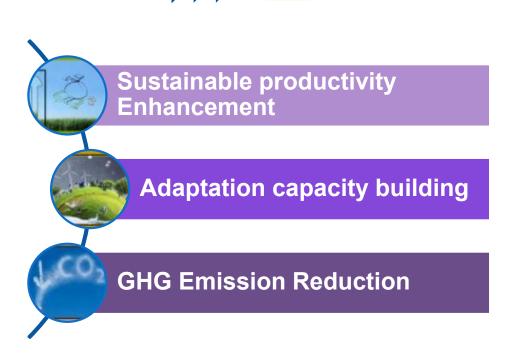
www.pertanian.go.id

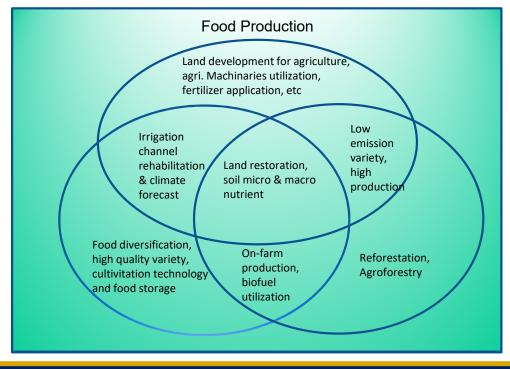


AGRICULTURAL SECTOR POSITION TO CLIMATE CHANGE

Agricultural
Development
Strategic
Policies to
Encounter
Climate
Change

Priority adaptation action, as an effort to achieve sustainable food sovereignty (primary priority of agricultural development)


Mitigation action: the development of environmentally friendly agriculture (low carbon)


Adaptation and mitigation action is synergized to achieve food self-sufficiency and better farmer welfare; mitigation is the co-benefit of adaptation, and adaptation is the entry point of mitigation

ADAPTATION ACTION

Adaptation Technology synergized with mitigation to enhance productivity (Campbel *et al.* 2011)

GHG EMISSION FROM AGRICULTURAL SECTOR INVENTORY

Indonesia is committed unilaterally to reduce GHG emission, according to 1st NDC 2016

FIRST NATIONALLY DETERMINED CONTRIBUTION
REPUBLIC OF INDONESIA

Nov. 2016

Table 1. Projected BAU and emission reduction from each sector category

No	Sector	GHG	GHG Emission Level 2030 (MTon CO ₂ e)			GH	G Emissi	Annual			
		Emission Level 2010*				(MTon CO ₂ e)		% of To	tal BaU	Growth	Growth
		MTon CO₂e	BaU	СМ1	CM2	CM1	CM2	CM1	CM2	(2010- 2030)	2000- 2012*
1	Energy*	453.2	1,669	1,355	1,271	314	398	11%	14%	6.7%	4.50%
2	Waste	88	296	285	270	11	26	0.38%	1%	6.3%	4.00%
3	IPPU	36	69.6	66.85	66.35	2.75	3.25	0.10%	0.11%	3.4%	0.10%
4	Agriculture	110.5	119.66	110.39	115.86	9	4	0.32%	0.13%	0.4%	1.30%
5	Forestry**	647	714	217	64	497	650	17.2%	23%	0.5%	2.70%
	TOTAL	1,334	2,869	2,034	1,787	834	1,081	29%	38%	3.9%	3.20%

* Including fugitive

**Including peat fire

Notes: CM1 = Counter Measure (unconditional mitigation scenario)

CM2 = Counter Measure (*conditional mitigation scenario*)

Main Emission Source in Agricultural Sector

CH4 from low-land rice field: water management & varity

CH4 from livestock (burp)

CH₄ from livestock manure/dung

N₂O from livestock manure/dung

N₂O from N fertilizer

CO₂ from fertilizer

CO₂ from dolomite

CO₂ from the burning of biomass

EMISSION SOURCE IN AGRICULTURAL SECTOR

No	Category	Gas	Activities*
1	Livestock		
	a. Enteric Fermentation	CH ₄	Number of head and breed of Livestock
	b. Manure processing management	CH _{4'} N ₂ O langsung	Number of head and breed of Livestock, manure management
2	Some sources on agricultural land		
	a. The burning of biomass	CH ₄ , N ₂ O, CO, NOx	Percentage of biomass left over after burning, variety of crops
	b. Dolomit	CO ₂	Number of dolomit used
	c. Fertilizer (urea)	CO ₂	Number of ure used
	d.1. Direct N ₂ O emission from the land/soil	N ₂ O	Number of chemical and organic N used
	d.2. Indirect N ₂ O emission	N ₂ O	Number of head and breed of
	Indirect N₂O emission, from livestock manure	N ₂ O	Livestock, manure management Number of head and breed of
3	Low-land paddy field	CH ₄	Livestock, manure management Low-land paddy field area, irrigation
	olumn 2 and 3 according to IPCC (2006) olumn 4 according to PI team MOA		system, and duration of flood

CLIMATE CHANGE ADAPTATION ASSESSMENT IN AGRICULTURAL SECTOR

BATAMAS = Society Livestock Biogas Program

Emission reduction = Methane avoidance from Batamas + energy substitution

Emission reduction from **methane avoidance** = Biogas amount x number of cow/cattle x gas volume from manure per day in biodigester x biodigester pressure x 365 days x conversion of GWP from CH_4 to CO_2 e

Energy Substitution = substitution to LPG + substitution to kerosene

Assumption: 90% of biogas produced is used for LPG substitution and 10% is used for kerosene substitution. Assumption is adjusted with field condition.

LPG Emission (substituted by biogas)

LPG Energy (ton CO_2) = biogas volume (m³/thn) x 0,9 x 0,46 x LPG heating value (GJ/kg) x 10⁻³x LPG emission factor (ton CO_2/TJ)

Kerosene Emission (substitued by biogas)

 Kerosene (ton CO₂) = biogas volume (m³/thn) x 0.1 x 0,62 x Kerosene heating value (GJ/liter) x 10⁻³ x Kerosene emission factor (ton CO₂/TJ)

Assumption

- Number of livestock per BATAMAS = 75 heads
- 1 head of cow/cattle produces biogas = 2 m³/day; with pressure of2 atm

Activity Data: BATAMAS unit amount

Average amount of livestock per BATAMAS unit

Organic Fertilizer Processing Unit (UPPO)

Emission Reduction = (Baseline emission – mitigation action emission) + carbon sequestration from organic fertilizer

Baseline Emission = CH_4 Emission from manure + N_2O direct emission from manure + N_2O indirect emission from manure

Mitigtion action emission = CH₄ emission from manure + N₂O direct emission from manure + N₂O indirect emission from manure that cows/cattle are NOT included in the UPPO

Carbon sequestration from organic fertilizer = UPPO unit x Number of cows/cattle in the UPPO x manure and hay weight (kg/tahun) x kandungan C pupuk kandang (kg/year) x C in the soil x 44/12

Assumption:

Manure and hay weight per head of livestock = 14,9 kg/day C content in the organic fertilizer = 39,3% (Hartatik dan Widowati, 2006)

C content in the soil = 0,67%/year (Mailard and Anger, 2013)

Activity Data:

- Number of UPPO unit
- Number of cows/cattle in every UPPO unit

Perbaikan kualitas pakan sapi perah

Enteric Calculation of CH₄ Emission Reduction

Feed: Legumes

Feed concentrate

Legumes

Concentrate

CALCULATION OF GHG EMISSION REDUCTION IN AGRICULTURAL SECTOR

18

A. Methane Emission Baseline Calculation

 CH_4 (ton/tahun) = Livestock population (by age) x Emission Factor x 10⁻³

Sub-category	GEI* (MJ/head/day)	CH ₄ EF (kg/head/year)	All beef cattle** (CH4 EF kg/head/year)			
Weaning (0-1 year) female + male	42.65±0.998	18.18±0.426				
Yearling (1-2 year) female + male	63.75±0.893	27.18±0.381	ţ			
Young (2-4 year) female + male	97.98±1.112	41.77±0.474	33.14±0.757			
Mature (>4 year) female + male	131.11±4.632	55.89±1.975	(Widiawati et al., 2016)			
Imported (fattening) male	394.00±8.167	25.49±0.528				

B. Fermentation Enteric Emission After Feed Improvement Calculation

 CH_4 (ton/tahun) = \sum livestock that has been given feed x emission factor x (1- correction factor of legumes/concentrate) x 10-3

Emission reduction 0,045 ~ 4,50 factor from concentrates	adaptation benefit (livestock production enhancement) is higher

C. Emission Reductionafter Feed Improvement Calculation

 CH_4 (tones/year) = CH_4 baseline – (CH_4 improvement+ CH_4 without improvement)

Activity Data:

- Livestock po;ulation
- Percentage of livestock with the improvement of feed (legumes and concentrate)

Emission From Paddy Fields

CH₄ Emission from low-land paddy field is influenced by:

- Planting period,
- > Irrigation system
- Organic & anorganic fertilizer,
- Soil types,
- Varieties

Activity Data:

- Low-land paddy field area (harvest area)
- Duration of flooding

Low Emission Variety

Selection of variety: production quality and quantity, pests and diseases resistance, climate and salinity resistance. The selection is not on the lowCH₄ emission.

EQUATION 5.1 CH4 EMISSIONS FROM RICE CULTIVATION

$$CH_{4 \text{ Rice}} = \sum_{i,j,k} (EF_{i,j,k} \bullet t_{i,j,k} \bullet A_{i,j,k} \bullet 10^{-6})$$

CH4 Rice = Methane emission from low-land rice cultivation, Gg of CH_4 per year

EFi,j,k = Emission factor for condition i, j, dan k; kg of CH_4 per day

ti,j,k = cultivation duration of low-land rice for condition i, j, dan k; day

= harvest area of low-land rice for condition I, j, dan k; hectare/year

i, j, dan k = Different ecosystem: i: water regime, j: types and number of soil organic matter, and k: other condition that CH4 emission from low-land rice

organic matter, and k: other condition that CH4 emission from low-land rice field may be varied

Emission factor and correction factor (emission reduction)

- Correction factor: flooded rice field = 1; less flooded = 0,71; intermittent = 0,46
- Emission factor CH₄ = 1,601 kg/hectares /day

BALANCED FERTILIZING (N EFFICIENCY)

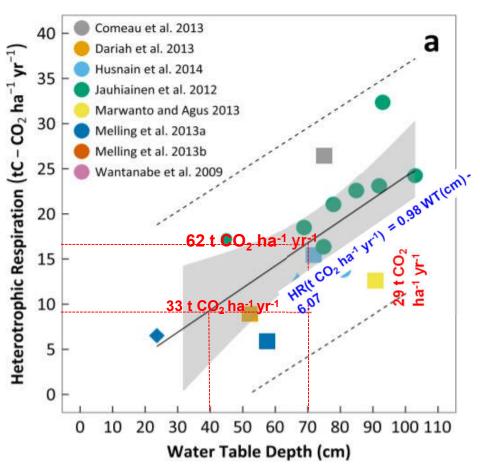
Baseline emission from fertilizer =

Direct N₂O emission from soil + Indirect N₂O emission from soil + CO₂ emission from urea fertilizer

Direct N₂O emission from soil + Indirect N₂O emission from soil + CO₂ emission from urea fertilizer

Emission from balanced fertilizing =

Assumption:


- 1.50% of harvest area of low-land paddy field that apply balanced fertilizing.
- 2. Fertilizer application recommendation: 250 kg of N and the threshold for fertilizer application of 280 kg of N → the difference of fertilizer application: 30 kg

Activity Data: Amount of N fertilizer used

Water Surface Management for Agriculture on Peat Land

Water surface rice on Peat Land

CO₂ Emission reduction: 1 ton of CO₂/hectare/year for every 1 cm increase of MAT

Base on research of Wakhid et al. (2017) every 10 cm of water level drop on peatland will raise 7,3 tones of CO₂ emission/hectares/year

Adapted from Carlson et al. Environ. Res. Lett. 10 (2015) 074006

IoT Application of Water Management in Swamp Land

- **Sensor**: Water level height, Water quality (pH and Salinity)
- **Actuator**: Electric motor (solar energy) pipe 4-6" to open/close water flow from tertiary to quarter channel (to the field)
- Microprocessor: Interface Android

Prototype: "ELBOW AUTOMATIC TABAT SYSTEM DOOR" in process of patent

The Development of GHG Emission Reduction (mill tones Co2e) 2010 - 2020

MITIGATION
VALUE
FROM
AGRICULTURAL
SECTOR

1	CH4 emission mitigation with the	0.578	0.52	0.699	0.427	0.213	0.107	0.053	0.29	0.19	0.1027	0.0513
	utilization of biogas particularly											
	from Batamas Program											
2	Carbon sequestration enhancement	0.0038	0.0165	0.0176	0.21	0.21	0.21	0.25	0.056	0.058	0.0103	0.0134
	with the utilization of organic											
	fertilizer from UPPO Program											
3	Field school, SRI program for	11.5	15.46	13.76	13	15.64	1.56	6.65	7.75	11.91	11.0924	11.3617
	organic rice, low emission rice											
	variety											
4	Organic Village	ı	-	-	-	-	-	1	ı	0.008	0.0035	0.0014
5	Quality improvement of feed for											
	cow/cattle										0.1038	0.0177
6	Balanced fertilizer application										0.2088	0.2312
7	Surface water management										7.8305	7.8305
	Reduction	12.0818	15.9965	14.4766	13.637	16.063	1.877	6.953	8.096	12.166	19.352	19.5072
Sou	rce: MOA											

ACTIVITIES DOCUMENTATION OF GHG EMISSION REDUCTION IN AGRICULTURAL SECTOR

WATER HARVESTING: FARM POND

WATER SAVING TECHNOLOGI FOR HORTICULTURE using SOLAR SYSTEM

Type-3 (Pump DC;drip)

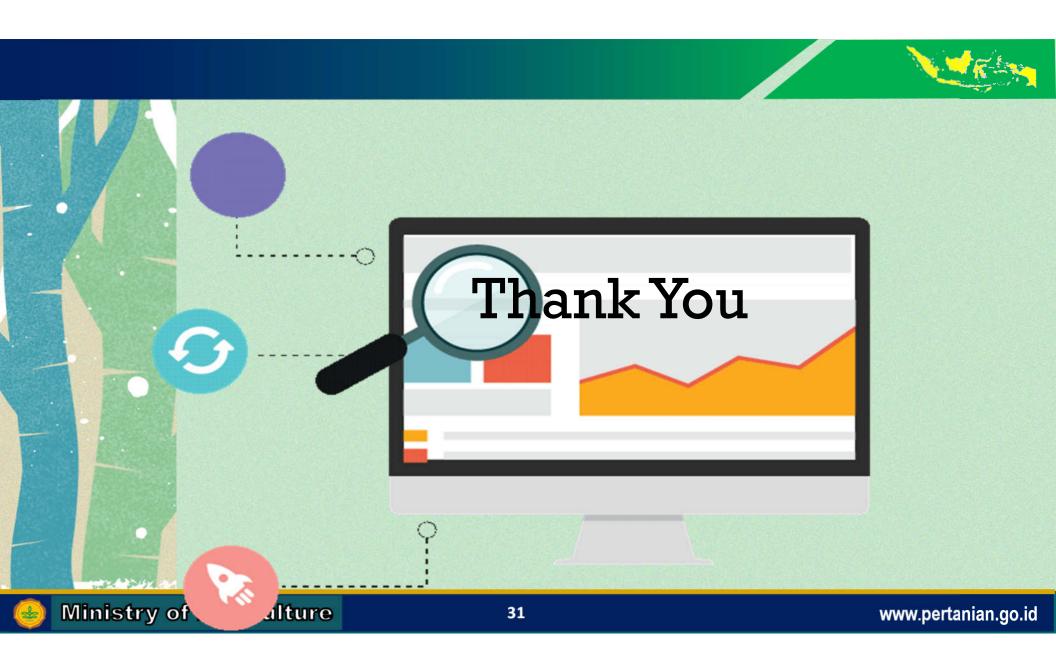
Type-2 (AC Pump, Drip Irrigation)

Specification:

- Solar pannel 100 400WA
- Solar Water pump (AC/DC)
- Micro Irrigation for 0.5 1.0 ha
- Smart farming: timer, fertigasi, android
- Cost: 50 100 juta IDR/paket
- Application: coastal land, dry land, and tidal land

Type-

Type-1 (AC Pump, Bulk Irrigation)


Organic Fertilizer Processing Unit (UPPO)

