

ORGANIZATION

Águas de Portugal is a **state owned holding founded in 1993** with the mission of designing, building and managing **Water Supply and Waste Water Systems**, in a framework of economic, social and environmental sustainability.

REGIONAL WATER AND WASTEWATER UTILITIES

SHARED SERVICES

INTERNATIONAL

9 465 km

Sewerage network

2 719

Water and wastewater pumping stations

INFRASTRUCTURES INVESTMENT 1993 TO 2018 7.6 billion €

Turnover | 2018

658 M€

Operational Result | 2018

165 M€

EBITDA | 2018

343 M€

Net Profit | 2018

87 M€

A WIDE RANGE OF SOLUTIONS

FOR DIFFERENT CONTEXTS

Services provision to 80% of the Portuguese Population

In the last 20 years the Águas de Portugal Group has created 12 water supply and sanitation regional utilities serving 8 million people

From highly density urban areas to rural regions; From small decentralized systems to large High-Tech and Smart Systems

ACHIEVEMENTS

EVOLUTION OF SERVED POPULATION

WATER CONTROLLED AND ACHIEVING GOOD QUALITY

Source: ERSAR, 2016

ÁGUAS DE PORTUGAL

ACHIEVEMENTS

BATHING WATERS QUALITY

320 beaches with "Blue Flag" status

Source: EEA, 2016

OUR PEOPLE, OUR COMPETENCES

3 155 professionals, working in the fields of engineering, asset management, operation and maintenance, investments planning, smart systems, energy efficiency, laboratories and others

OUR INTERNATIONAL ACTIVITIES

THE CIRCULAR ECONOMY

Regenerative and restorative economic model, where resources are managed in a way that preserves their value and usefulness for the longest time, thus increasing their productivity and preserving the natural capital and financial capital of companies and civil society.

- Shift from a conventional model that has been designed for linear production and consumption patterns to a model that supports the circular economy.
- Water utilities are providers of drinking water, treated wastewater and are also suppliers of valuable resources.

Image credit: European Commission

CIRCULAR ECONOMY

The water pathway

- Water efficiency
- Wastewater reuse

The materials pathway

- The energy
 - The energy pathway

- Resources efficiency
- Drinking Water Sludge to industry
- Sewage sludge and compost to agriculture
- Energy efficiency
- Energy production

The water pathway

- Bridge the gap between water supply and demand
- The water pathway should be developed as a closed loop system, with cascading water quality options, using the fit for propose approach
- Ensure diversified resource options, efficient conveyance systems and optimal reuse

Water efficiency

Leakage management and control | active leakage control; WONE – Water Optimization for Network Efficiency

Reduction in Water Consumption | encourage reduced consumption by awareness raising for example with campaigns or water metering

CHALLENGE

WONE

Water Optimization for Network Efficiency

Annual NRW volume of 40 million m³

in Lisbon distribution network

Value of water lost in excess of

€25 million per year

To reduce NRW and promote sustainable & efficient resource usage in the Lisbon distribution network

by adopting and adapting best practice used by the most efficient global water utilities

SOLUTION

WONE Water Optimization for Network Efficiency

- Data management for the 161 DMA implemented
- Integration and analysis software
- Practical performance indicators
- System alarm & Alert management
- Leakage assessment & Target setting
- Surgical control of leakage

Internationally recognised by many awards and other distinctions

CHALLENGES

WATERBEEP Smart efficiency

Lack of awareness and engagement among citizens to the water cause

To support users to make a responsible water consumption

To promote sustainable & efficient resource usage in the Lisbon distribution network

SOLUTION

WATERBEEP Smart efficiency

A smart solution that gives customers information about their water consumption,

allowing them to optimize the use of water in their homes or business

Encourages consumption reduction by awareness raising

Features

- Check the billed water consumption in recent months
- Discover the average daily consumption per person and compare it with the typical local figures
- Meter reading
- See the evolution of consumption over the choice of the costumer
- Check the water consumption (7 & 30 days), and every 15 min from previous day
- Receive consumptions alerts
- Receive water consumption information in a customized file

Wastewater reuse

Urban areas

Internal wastewater recycle | WWTP general and equipment washing; WWTP green areas irrigation; service water in internal processes

Urban green areas | Irrigation of urban green areas and municipality parks

Street cleaning | Water reuse in street cleaning by tanker trucks

Industrial use | Building climate control

Water driving the circular economy

Demonstration Project of Water Reuse

using technologies of reduced operational cost (solar radiation) and its use in the irrigation activity (pomegranate tree)

The materials pathway

- Resource recovery must compete in a demand driven market
- Barriers like scale dimension, consumer acceptance and price must be overcome
- Niche market and collaboration might be drivers to the success

The materials pathway

Drinking water sludge to industry | Production of cement clinker; Production of ceramic materials

Sewage sludge to agriculture | Organic matter to improve soil structure and nutrients (N, P, micronutrients) to match crop needs

Sewage sludge management options

(Jan-Sep 2018)

The energy pathway

Electrical energy consumption

730 GWh/year (709 from grid + 21,5 self-production)

Portugal consumption

1,4%

Emissions | 2018

333 mton CO₂

Water electric energy consumption

0,71 kWh/m³

WW electric energy consumption

0,48 kWh/m³

- Water and wastewater systems are important energy consumers, contributing to green-house gas emissions
- Energy portfolio should reduce carbon-based energy consumption, increase renewable energy consumption and increase renewable energy production

The energy pathway

PEPE - AdP Energy Efficiency and Generation Plan (2017-2020)

Increase onsite energy generation

Optimize energy consumption Improve energy procurement and energy supply management

Increase electric mobility

• Improve the conditions of **electric energy acquisition**

• Reduce energy consumption (9%)

Increase self generation (doubling to achieve 50 GWh/year)

Energy production

PV Solar Electricity |

PV plants: 316 units

Installed power: 3 345 kW

Implementation area: 24 000 m²

Anaerobic Digestion 28 WWTP with anaerobic digestion; biogas combined heat and power generation

AD Installed capacity: 140 000 m³

Produced energy from biogas: 21 GWh

Average neutrality WWTP with AD: 32%

Energy consumption optimization

111 infrastructures

With ISO 50 001 Certification

62 energy auditors

In our companies

1. Audits and studies

- To conduct energy efficiency audits
- To assess consumption patterns

2. Operational measures

- Energy management systems and sensors
- Operational routines optimization to reduce energy consumption

3. Structural measures

- Acquision of energy efficient equipment
- Plant revamping to become more energy efficient

Electric mobility

Car fleet renewal:

127 new electric vehicles

76 Passenger cars

51 Light commercial vehicles

134 Electric vehicle charging points

240 ton / year CO₂ emissions reduction

Final remarks

- Shifting from a conventional model to a model that supports the Circular Economy is a global challenge
- Water utilities are providers of drinking water and treated wastewater but also of valuable resources
- Water, energy and materials pathways are all important to the Water Circular Economy
- The water pathway includes bridging the gap between water supply and demand, ensuring diversified resource options, efficient conveyance systems and optimal reuse
- The materials pathway include sludge and other materials reuse and recovery
- The energy pathway should reduce carbon-based energy consumption and increase renewable energy production (using water and WW resources like biogas)
- Sustainable cost recovery and collaboration might be drivers to improve Water Circular Economy

