

2–5 October • ADB HQ, Manila, Philippi

Methods and approaches

for NON REVENUE WATER

Christian MONCET
SUEZ Consulting

This is not an ADB material. The views expressed in this document are the views of the author/s and/or their organizations and do not necessarily reflect the views or policies of the Asian Development Bank, or its Board of Governors, or the governments they represent. ADB does not guarantee the accuracy and/or completeness of the material's contents, and accepts no responsibility for any direct or indirect consequence of their use or reliance, whether wholly or partially. Please feel free to contact the authors directly should you have queries.

Suez Consulting...

Services supporting you through every step of your project...

- o project and programme management
- \circ studies
- o design and construction supervision
- o technical assistance
- \circ training
- \circ due diligence

Our sectors

a multidisciplinary engineering capability dedicated to urban and regional development...

WHY IS NRW REDUCTION CRUCIAL?

DI Design Center 375778AI 09-00

Rapid growth of Asian cities Increase of industrial, irrigated agriculture, energy needs

Loss of 29 billion m3 of treated water/year Increase of industrial, irrigated agriculture, energy needs... ...Valued at \$9 billion

Source: ADB, The Issues and Challenges of reducing of reducing non revenue water, 2010

WHY IS NRW REDUCTION CRUCIAL?

Main stakes

Protect water resources

Optimize the operating costs

Ensure a continuous supply of water of excellent quality

Provide equitable access to

water

Improving the water utility performances by analyzing the involved processes and proposing

action plan

Sustainable results for NRW

Implementing a transversal approach with NRW project management

Using the technical "classical" approach with new tools and technology

Some necessary preriquisites:

Need of accurate mapping (analyze uncertainties/inconsistencies of the database)

Need of a customer database (analyze uncertainties/inconsistencies of the database)

Hydraulic modelling: Necessary for the implementation of sectorization and/or DMA, must be calibrated

How Approaching NRW?

	Authorized	Billed authorized consumption	Billed metered consumption Billed unmetered consumption	Revenue Water (or billed volumes)	
	consumption	Unbilled	Unbilled metered consumption		
System Input Volume		authorized consumption	Unbilled unmetered consumption		
	Water losses		Metering inaccuracies		
		Apparent	Estimate of Unmetered Consumption	Non Revenue	
		Losses	Unauthorized consumption	Water or (unbilled	
			Errors linked to the data acquisition processes	volumes)	
			Transmission and distribution mains		
		Real Losses	Overflow or leakage of storage tanks		
			Service connections to meter		

To achieve a water balance (IWA water balance)!

How Approaching NRW?

Need for transversal actions & coordination !

BUT...

Several failures can avoid:

- Poor design of the plan
- No coordination between the components
- No coordination between the investments
- Poor involvement of the management
- Difficulties under estimated
- T factor under estimated
- Considering that each department is autonomous

Taking into account the operational and transversal dimensionis necessary but not sufficientTaking into account the maturity of the water utility isabsolutely necessary to get sustainable results

To assess the maturity and the capacity of the water utility to implement on a sustainable manner the NRW project, we use WIKTI to implement the action plan and to go beyond the technical issues

WIKTI[®] (Water International Knowledge Transfer Initiative) is **a maturity assessment tool** which aims to drive forward a water utility.

Stay connected to SUEZ know-how through a simple, structured & up-to-date method

- Continuous improvement since 2006
- 2000 assessment criteria
- Maturity Levels
 - Level 1-2: All in place to allow a good water system
 - Level 3-4: All processes supported by IT systems; requiring important human resources and financial investments
 - Level 5-6: High standard of technology and technical level to allow a complete automation of the process

Deployed on **20** countries in **5** continents

42 process kits

Some case study

Example 1: MCDC, Mandalay, Myanmar

• TRANSVERSAL

Diagnostic of Utility

OAverage score very low

O Low score is due to the closure of Myanmar and the lack of exposure of MCDC to modern utility operations

> For such a utility, WIKTI can be used as a guide for mapping and following the development of the utility as well as the NRW reduction project

• CUSTOMER SERVICES

• DRINKING WATER

Mapping of Water Supply Technical Assistance (a variety of

actors) in MCDC

SUez

Example 2: NWSDB, Sri Lanka

Undertaken as part of CDTA 8835

- OSetting Up of Independent Regulator of NWSDB
- CEnhanced NWSDB Institutional Structure (including NRW, Asset Management, ...) and reinforced autonomy
- CEnhanced Planning & Design function as well as NRW and development of E&S Division

Scope

- Link the analysis to the setting up of the regulation scheme for the NWSDB readying the NWSDB for regulation
- OAll of the distributed operations of the NWSDB the so-called Regional Support Centres. Covering water supply services only within the three major zones of NWSDB
 - Western Zone (4 RSCs)
 - South Eastern Zone (4 RSCs)
 - Norherrn Central Zone (4 RSCs)

Overall Summary & Business Priorities

WIKTI	North Central	Sabagar amuwa	Uva	North Western	Northern	Western Central	Central	Eastern	Western North	Western South	Souther n	NWSDB
NOTE OF THE BU	2.62	2.96	2.98	3.11	3.13	3.21	3.21	3.29	3.28	3.42	3.47	3,15
Mini	0.54	1.02	0.55	1.27	0.60	1.20	1.22	1.66	0.94	1.49	1.67	1.11
Max	4.38	4.61	4.49	5.04	5.22	4.56	4,74	5.14	5.15	4.96	5.00	4.84

	Priority 1	Priority 2	Priority 3
	Leak Detection		
	Water Network Mapping		
Drielies weter		Distribution Network Management	
Drinking water		Transmission Network Management	
	Storage Tank Management		
			Resource Management
Outerstand		Customer Contact	
Customer services		Meter Management	
	Prevention / Health & Safety		
Comment	Emergency Response & Management		
Support		Real Time Monitoring	
	Information Technology		
	NRW		
Cross functionnal	Workforce management		
		Asset management	

Example of detailled action plan

		Priority 1				
	Priority short term actions	Mid term actions	Long term actions			
Leak Detection	Elaborate a leak detection plan (identify priority sectors, define KPI to follow up the activity (including invisible leaks), define a main sectorization strategy)	Create procedure for leak management plan (program description, leak detection methods, organization (human and material resources))	Analysis of the correct leak research system according to the context (effectivness of leak detection)			
	Define a person in charge of managing leak detection for each RSC	Define a strategy for a detailed sectorization (DMA implementation)	Use of advanced detection methods (gas tracer)			
	Complete / control the equipments to measure each production volumes	Follow up of night time flows for each sector and correlation to other technical and customer data	Implement microsectorization and use of remote leak location			
	Complete the acoustic detection equipment	Organize recurrent training on leak detection methods and equipment				
	Record the detected leaks on the GIS (location, method of lodetection, type of leak, material,)	Quality control after a leak repair				

Some case study

Average Maturity & Projected Maturity after completion of short term actions

MATURITY PROCESSES IS A GOOD TOOL?

MATURITY PROCESSES IS A GOOD TOOL?

CONCLUSION

To understand what is actually going on in your day-today operations

To identify opportunities to improve operations

& increase your value/cost ratio

To detect strategies across business processes that have a strong fly-wheel effect & are mutually reinforcing for best performance on NRW reduction

Securing the Whole Value Chain by capacity building and knowledge transfer with our operator vision to the Water Utility

