

Structured Decision Support for Natural Resource Management

Matthew E. Andersen Senior Scientist for Biology Director's Office of International Programs ADB Manila 9 May 2018

This is not an ADB material. The views expressed in this document are the views of the author/s and/or their organizations and do not necessarily reflect the views or policies of the Asian Development Bank, or its Board of Governors, or the governments they represent. ADB does not guarantee the accuracy and/or completeness of the material's contents, and accepts no responsibility for any direct or indirect consequence of their use or reliance, whether wholly or partially. Please feel free to contact the authors directly should you have queries.

Global issues for society and the environment

Competition for, and natural threats to, natural resources

Availability of water for people and ecosystems

Effects of climate change on resources, ecosystems, human health

Effects of wildlife disease on human health

An urgent need for authoritative science information

US Geological Survey

The US Government's Independent Scientific Advisor

- Conduct Applied Research in the Public Interest
- Collect and Deliver Natural Resource DataSupport Informed Decision Making

Science for a changing world

Structured Decision Support for Natural Resource Management
Multidisciplinary Programs
Focused Studies

Support for Natural Resource Management Decisions in Asia Structured Decision Support; Glen Canyon Dam, Arizona USA (application: Mekong R.) Decision Support Modeling; Everglades, Florida USA (application: Mekong R.) Disease Risk Assessment for Emerging Infectious Diseases; Republic of Korea, **Thailand (application: SE Asia)** Biodiversity Protection for Viet Nam **Groundwater Modeling Viet Nam – Cambodia**

Data for Informed Decision Making

Where have we been? Baseline What questions can we ask? **Develop creative valuation of diverse resources** Forecasting trends; Impacts of changes How can we manage sustainably for people? Considering conflicting demands on resources Quality-assured data in compatible formats required

Structured Decision Support: Dam Operations

- Dam built for flood control now also provides substantial hydropower
- Dam operations impact many users
 - Electricity customers
 - Native peoples' cultural traditions
 - Native and nonnative fish
 - Recreation
 - Natural area conservation
- Comparisons of dam operation (flow) alternatives impacts on resources needed

Social Ecological System

Diverse approach needed for meaningful decision support

≥USGS

Multi-Criteria Decision Analysis Process

MCDA steps to frame and analyze a decision Elicit objectives from participants Develop a set of creative alternatives for flows Evaluate the alternatives Elicit values-based tradeoffs Evaluate uncertainty (compare to Expected Value of Perfect Information EVPI) Discern and integrate social values nalysis to Support Development o anyon Dam Long-Term Experimental and scientific understanding

Runge et al. 2015

									Best										
Consequence Table										Better									
Darfarmanan Matrice										Worse									
	Performance Metrics											Worst							
		1	2 Tomp	3	4 Trout	5 Qual	6	7	8	9	10	11	12	13	14	15	16 Wot	17	18
		НВС	Suit	CPE	Emig.	Trout	WTSI	flow	TOR	Power	Cap.	CAI	FI	raft	Veg	SLI	land	MR	TMF
		High	High	High	Low	High	High	Low	High	High	High	High	High	Low	High	High	High	Low	Low
	А	4991	0.097	2.11	36,699	769	0.159	22.7	0.823	148.5	28.5	0.139	0.786	49	3.66	0.211	0.72	0.07	0.0
	B1	5392	0.097	1.67	29,586	867	0.171	23.1	0.823	149.4	30.4	0.146	0.420	71	3.87	0.234	0.80	0.44	3.0
()	B2	5541	0.097	1.46	24,172	920	0.144	23.1	0.823	150.4	32.4	0.122	0.256	72	3.12	0.222	0.17	0.30	3.1
	C1	5016	0.082	2.23	43,683	748	0.377	21.8	0.824	147.3	20.8	0.376	0.935	315	3.18	0.536	0.25	0.00	6.5
Ų	C2	4527	0.079	3.18	66,890	640	0.365	21.8	0.823	147.2	19.5	0.371	0.929	307	3.18	0.534	0.25	0.00	0.0
	C3	5335	0.079	1.90	33,559	830	0.043	18.5	0.821	148.9	20.8	0.043	0.924	0	2.83	0.065	0.25	0.74	0.0
	C4	4874	0.079	2.72	55,076	707	0.334	21.0	0.823	147.6	20.8	0.335	0.928	83	2.98	0.483	0.25	2.80	0.0
	D1	5247	0.094	2.02	40,784	811	0.379	23.5	0.835	146.6	23.8	0.359	0.741	348	3.67	0.531	0.75	1.67	3.9
	D2	5181	0.095	2.15	43,981	796	0.378	23.6	0.835	146.1	19.6	0.360	0.784	351	3.69	0.535	0.76	2.02	6.9
	D3	48/6	0.095	2.63	55,811	/11	0.378	23.5	0.836	146.8	23.8	0.359	0.724	348 249	3.70	0.533	0.78	2.95	0.0
	D4 E1	5241 5260	0.097	2.05	40,950	826	0.300	25.5	0.830	140.7	23.1	0.558	0.741	548 177	3.95 3.54	0.329	0.62	0.00	5.0 2.6
(\mathbf{D})	E1 E2	5015	0.090	2 33	<i>A7 A</i> 50	761	0.311	21.5	0.837	148.0	22.0	0.303	0.508	177	3.34	0.430	0.02	0.00	2.0
	E3	5477	0.087	1.68	28 499	891	0.030	18.4	0.836	149.3	22.8	0.0292	0.534	0	3.93	0.046	1 10	0.00	0.0
	E4	5103	0.087	2.19	42.806	781	0.281	20.9	0.838	148.1	22.8	0.272	0.529	79	3.93	0.415	0.91	1.73	0.0
	E5	5470	0.083	1.68	28,561	890	0.029	18.5	0.835	147.2	21.8	0.028	0.517	0	3.87	0.046	1.05	0.00	0.0
	E6	5708	0.087	1.42	22,415	956	0.032	18.8	0.837	149.3	22.8	0.030	0.518	0	3.93	0.049	1.10	0.00	2.4
	F	4450	0.030	3.37	71,869	592	0.299	36.8	0.749	141.0	11.2	0.406	0.997	919	3.14	0.558	0.14	0.00	0.0
	G	4741	0.102	2.81	58,533	702	0.465	24.7	0.840	142.9	18.0	0.451	0.981	512	3.40	0.576	0.42	3.05	11.0

Stakeholder Agencies

Best

Better

Worse

MCDA by Agency

Decision Support Modeling: Adapting to Climate Change

- 15 LIFE ON LAND
- Functioning Everglades supports rare species
- Water management critical for multiple stakeholders
 - Agriculture
 - Municipal
 - Native species

- Changes expected to impact species, habitats
- Models needed to compare alternatives
 SGS

Data Collection and Modeling

Developed data standards allowed for rapid & effective collaboration

- Used in ecological models developed for Central Everglades Planning Process (CEPP)
- Joint Ecosystem Modeling developed tools to help display information from model outputs to help in decision making

Desktop visualization of complex time series modeling outputs

Romañach et al. 2014

Using data and models to recommend conservation areas

ARIZONA STATE UNIVERSITY

solutions to complex problems in the face of uncertainty

Linked via synchronized browsers, distant researchers participate real-time using inexpensive "Hub and Spoke configurations" with the ASU Decision Theater "Hub"

Disease Risk Assessment Specialties

- Emerging Infectious Disease, EID
- Human Livestock Wildlife Interface
- Emerging infectious disease assessment
- Capacity Building

"Need to increase the capacity of all countries worldwide to conduct surveillance, early detection, and initiate appropriate response to outbreaks and spread of diseases in wildlife" OIE Global Conference on Wildlife 2011

Risk and Prioritization

EID Risk Factors Ecological change, climate change, human demographic and behavior changes, international travel and trade, microbial adaptation, infrastructure deficiencies

EID Prioritization

 Relative importance of wildlife diseases and risk factors varies among regions; simultaneous management prohibitively expensive

EID Risk Assessment Capabilities

- Expertise in qualitative and quantitative models and risk assessments
- Expertise in Bayesian modeling
- Expertise in writing and conduct of questionnaire surveys and subject matter elicitation workshops
- Development of novel technologies

Wildlife EID Risk Assessment: Republic of Korea

Korea National Wildlife Health Center

Nationwide online questionnaire survey of subject matter experts

Assessment and Ranking

Assessed wildlife disease release risk, exposure risk, consequences, and uncertainty Ranked disease exposure pathways and disease amplification risk factors

Cluster Analysis of Priority Diseases and Pathogens

High Risk, Low Uncertainty	Risk Group
African swine fever	Livestock
Aujeszky's disease	Livestock
Canine distemper virus	Wildlife
Canine parvovirus	Wildlife
Classical swine fever	Livestock
Porcine circovirus	Livestock

Cluster Analysis of Priority Diseases and Pathogens High Risk, Medium Risk Group

High Risk, Medium Uncertainty	Risk Group
Bovine tuberculosis	Livestock
Brucella abortus	Livestock
Campylobacter spp.	Humans
Coxiella burnetti	Humans
Ehrlichia chaffeensis	Humans
Hepatitis E	Humans
HPAI	One Health
Neospora caninum	Livestock
Rabies	One Health
Salmonella spp.	One Health
SFTS	Humans
TBEV	Humans
West Nile virus	One Health

Exposure Pathways

Rank	Risk Score	Exposure Pathway
1	3.70	International human movement/migration
2	3.76	Illegal importation of wildlife and wildlife parts
3	3.85	Migration or natural movement of wildlife
4	4.18	Accidental introduction of disease vector
5	4.35	Smuggling of livestock products
6	5.59	Legal importation of wildlife and wildlife parts
7	6.14	Legal importation of livestock and products
8	7.63	Importation of biological materials and pathogens
9	7.72	Importation of vegetables and plant material
10	8.08	Bioterrorism or the deliberate release of pathogens

Disease Amplification Risk Factors

Rank	Risk Score	Risk Factor			
1	3.68	Proximity of humans, livestock, and wildlife			
2	4.64	High density of livestock populations			
3	4.84	Habitat loss and environmental degradation			
4	5.10	Climate change			
5	5.96	Geographic location and proximity to neighboring countries			
6	6.05	Overpopulation of species (wild boar, water deer)			
7	6.39	Geological factors and location of Korea (longitude/latitude)			
8	7.04	High density of human population			
9	7.24	Environmental pollution			
10	7.39	Agriculture and farming systems			
11	7.67	Loss of biodiversity in Korea			
≪USGS					

Disease Transmission in Bats

Prince Mahidol award presented to USGS researcher for contributions to understanding zoonotic disease transmission in bats in Thailand

Tracking and modeling bat behavior

O'Shea, Cryan, et al. 2014

Conclusions, Future Direction

Evidence-based priority setting when allocating resources to address EID risks

- One Health approach enhances coordination and improves infrastructure to address emerging infectious diseases
- Useful for countries or regions that wish to conduct similar large scale risk assessments

Projects

FAO Reference Centre for Zoonotic and Wildlife Disease Asian Society of Conservation Medicine Conference Support

The Joint Conference of the Asian Society of Conservation Medicine (ASCM) and Wildlife Disease Association Australasia (WDAA)

Venue: Grand Inna Bali Beach Hotel, Sanur, BALI, INDONESIA

Date: October 28 - November 5, 2018 (Please refer to Tentative Schedule)

ASCM Link: http://2018bali.ascm-aszwm.org/

Biodiversity Protection Strategies for the Viet Nam Biodiversity Conservation Agency (BCA)

I. Enhance Scientific Understanding (Capacity Building)

- 2. Review Law, Draft Amendments
- 3. Enhance Offsets and Mitigations
- 4. Community-based Management
- Consistent with Vietnam National Biodiversity Strategy to 2020 and the Biodiversity Corridors project

Enhance Scientific Understanding

Assessment – Stratification Organisms Species Groups Habitats **Database - GBIF** Spatially referenced QA/QC Interconnectedness Improved usability **Capacity building**

Review Law, Draft Amendments

Review VN and other biodiversity laws
Draft amendments for BCA

Strengthen legal tools
Meet international obligations
Rationalize agency mandates
Strengthen enforcement

Enhance Offsets and Mitigation

- VN seeking to increase Heritage, Ramsar, etc.
 Assess and recommend options
 Biodiversity offsets
 Payments for environmental services
 - Conservation banking

15 LIFE ON LAND

Community-based Management

Community outreach
Recommended protected areas
Legal review and draft recommendations

Goals and objectives
Prohibited activities
Penalties for violations
Roles and responsibilities

Regional Assessment of Lower Mekong River Groundwater

Groundwater Background

Lower Mekong groundwater development accelerated since 1990s

- Groundwater Surface Water (GW SW) interactions not well understood
- GW increasingly important
 - Water supply
 - Agriculture
 - Maintaining surface flows

 USGS providing groundwater training to Thailand Dept. Groundwater Resources
 USGS

LMRB Current Groundwater Monitoring

Legend

- Khorat subbasin GWIP wells
- Sakon Nakhon GWIP wells
- Lao PDR GWIP wells
- Vietnam delta 90s-00s monitor wells.
- Cambodia monitoring wells
 - PRASAC (51)
- JICA/MRD monthly monitoring (52)
- JICA/MRD test (55)

Major rivers and lakes Groundwater Potential Yield m3/hr

Unconsolidated, > 80 Unconsolidated, 30 - 80 Unconsolidated, 5 - 30 Unconsolidated, < 5 Consolidated, > 50 Consolidated, 15 - 50 Consolidated, 5 -15 Consolidated, < 5 Resistant bedrock, 1-3 Resistant hard rock. < 2 LMRB drainage boundary

Mekong River Groundwater Study

Concept note with VIGMR for Viet Nam – Cambodia groundwater study Train local scientists in GW study methods Simulate groundwater – surface water interactions in Mekong Delta Assess and forecast saltwater intrusion in response to withdrawals and sea level rise Forecast responses to management, mitigation, development **Dynamic web-based interfaces for reporting and** updating

