Saft Energy Storage System Which application? Which storage?

This is not an ADB material. The views expressed in this document are the views of the author/s and/or their organizations and do not necessarily reflect the views or policies of the Asian Development Bank, or its Board of Governors, or the governments they represent. ADB does not guarantee the accuracy and/or completeness of the material's contents, and accepts no responsibility for any direct or indirect consequence of their use or reliance, whether wholly or partially. Please feel free to contact the authors directly should you have queries.

Saft

ADB - Manila, Januray 2018

Who is Saft today?

Global presence

Saft Energy Storage Systems, January 2018

Where we fit in Total

2016 sales by division

Saft Energy Storage Systems, January 2018

We serve multiple customer segments for specific applications

Energy Storage Systems (ESS)

Saft Energy Storage Systems, January 2018

Saft Energy Storage Systems, January 2018

Evolution of the electricity grid

Fig. 1—(a) Centralized. (b) Decentralized. (c) Distributed networks.

ESS Applications: cycling and C-rates

Cycling	Heavy	Medium	Low
	Cycling	Cycling	Cycling
Power	5Capa/day @1-40%DOD	1-2Capa/day @10-70%DOD	1 cycle/day @ 50-80%DOD
2C to 4C	Ancillary		
	Services		
1C to 2C		Renewables Integration	
0,5 C to 1C			Grid Peak Management

Saft Energy Storage Systems, January 2018

Saft Li-ion end-to-end capability

State-of-the-art manufacturing in Jacksonville, Florida

- Construction of complete battery systems, automated cell manufacture through module production to assembly into ISO containers
- 235,000ft2 under roof, with annual production capability of around 400 MWh
- Expansion capability to double production

From cells to battery

Saft Energy Storage Systems, January 2018

Saft's Energy Storage Projects Worldwide

Saft Energy Storage Systems, January 2018

ENERGY STORAGE USE & BENEFITS

Saft Energy Storage Systems, January 2018

Saft proprietary information - Confidential

THE REAL PROPERTY AND

Applications On-Grid

Major Functions of Storage

Wind & Solar generation

Ramp control

Limit up & down ramp rates

Smoothing

Keep production in forecast window

Shaping

Stable power output Controlled ramp up/down

Grid

Frequency Regulation

Injection/Absorption of active power

Peak Shaving

- of consumption peaks
- of generation peaks

Saft Energy Storage Systems, January 2018

Saft positioning

Integration of PV & Wind farms Ramp control & frequency support & other grid services

Reference projects: Puerto Rico, Feroe Islands **Reference projects:** Cobija Bolivia, NTPC Canada

Microgrids

Diesel & Renewables

Frequency regulation associated with other grid services

Reference projects: Venteea, SEPTA

Focus utility scale, power oriented applications for high value generating services

- 1. High power
- 2. Long calendar life at high temperature
- 3. Complex use cases with multi-application stacking
- 4. Microgrids with variable, multi-generation sources and loads

→ Requiring high level of application and technology mastering

Strengths

Saft Energy Storage Systems, January 2018 Saft proprietary information - Confidential

saft

Saft Energy Storage Systems, January 2018

Saft VL cells Gen 3

NMC / NCA technology - m

- High charge acceptance
- Enhanced cycle life
- High energy throughput

main features

- Lower impedance
- Best calendar life on market

VL 41M

- End Of Life @ 30% capacity loss
- 5,000 cycles @ 80%DOD , 1C
- 100,000 cycles @ 15%DOD, 1C

VL 30P

- End Of Life @ 30% capacity
- 9,000 cycles @ 80%DOD , 1C
- 200,000 cycles @ 15%DOD, 1C

Saft VL cells Gen3 - Calendar life

- Best calendar life of Li-Ion technology due to NCA
- Loss below 0.5%/ year in majority of ESS applications:
 - Cell average temperature < 35°C
 - SOC average $\approx 50\%$

Saft Energy Storage Systems, January 2018

Generation 3: Container Improvement

up toup to85% roundtripup to3 MW1.2 MWh800% per dayincl auxiliaries20 years

Saft Energy Storage Systems, January 2018 Saft proprietary information - Confidential

Saft

Intensium[®] Max + 20 range (700-1200kWh)

	Intensium Max+ 20E	Intensium Max+ 20M	Intensium Max+ 20P	Intensium Max+ 20P 2 dist cab	
Energy (kWh)	1 180	1 090	780	700	
Continuous discharge power (kW)	2 500	2 500	2 500	2 800	
Continuous charge power (kW)	850	2 200	2 600	2 900	
Nominal voltage (V)		77	7]		
Voltage range (V)	630 – 867				
Dimensions L x W x H (m)		6,1 x 2,5 x 2,9	(3,8 incl HVAC)		
Weight (†)		19	2,5		
Configuration : 18 or 16 ESSU with 15 Synerion-Gemini each - gen3 NMC/NCA cells					

Saft's Intensium Mini (120-480kWh)

Saft Energy Storage Systems, January 2018

	Intensium Mini - E	Intensium Mini - M	Intensium Mini – P
Energy (kWh)	120	110	80
Continuous discharge power(kW)	280	280	280
Peak discharge power (kW)	420	420	420
Continuous charge power (kW)	80	115	170
Voltage range (V)	588 - 790	588 - 790	588 – 790
Dimensions L x W x H (m)		2,45 x 1,03 x 1,58	
Weight (†)		1,95	

Configuration : 2 ESSU with 28 Synerion each

gen 2 NCA cells

Saft Energy Storage Systems, January 2018 Saft proprietary information – Confidential

4

Saft

SAFT

11

1

Field Service

- Skilled workers, comprehensive services
 - Installation
 - Commissioning
 - Training
 - Testing
 - Trouble Shooting
 - Maintenance & Repair
 - Warranty Extension
 - Condition Monitoring
 - Refurbishment

Technical Performance driving low TCO

	Feature	Customer Benefit
Energy Efficiency	 Low energy consumption for cooling Stability across all SOC/temp/C rates 	Lower energy cost – higher revenue Lower CO2 footprint
Calendar life	No capacity oversizing Can operate at high temp → less cooling	Low / no replacement cost Low opex
Availability	99% PLC & monitoring to reduce downtime	Grid asset compatible High revenue – Iow maintenance
Design Flexibility	Multiple PCS interfaces (2 / container) Adaptation to harsh environements Daisy chain of 2 containers equiv. 40 ft	Optimum power / energy rating for each project
BMS performance	Accurate cell & string balancing SOC accuracy	Full utilization of energy → Optimal revenue generation
Maintenance & Services	PLC enables: Capability matrix Predictive maintenance Realtime DTP, data valorization & reporting	Optimum asset utilization Minimum maintenance cost

Saft Energy Storage Systems, January 2018

Cobija PV diesel hybrid power plant

- Pando province, northern Bolivia
 - Not connected to national grid
 - 65% electricity coverage
- World's largest PV-diesel hybrid
 - 16MW diesel generation 8MW max load
 - 5MW PV
 - 2.2 MW Li-ion storage system
 - 50% of Cobija power needs (37 GWh/yr)

The storage solution

- 2.2 MW 1.2 MWh
 - 2 containers Intensium Max 20 M
 - 4 Sunny Central Storage 630 SMA
 - → compensation of PV fluctuations
- Fuel Save Controller SMA
 - Calculates maximum PV injection to grid
 - Smooth operation of gensets

The storage optimum

PV & smoothing

- Optimum for Cobija project
- Replaces 2 gensets running @50%
- 2 mio I fuel saving

PV & shaping

- Significantly higher Capex
- ROI depends on fuel cost

THANK YOU

VENTEEA project

VENTEEA is a project focused on the integration of large wind generation within MV distribution networks.

Key facts and figures:

- 1 existing wind farm 12 MW (dedicated MV feeder)
- 1 existing wind farm 6 MW (non dedicated MV feeder with 1500 customers)
- 1 HV/MV transformer (63/20 kV 20 MVA)
- 130 secondary substations
- 3 200 customers (6 MV feeders)

VENTEEA: installation

Testing multiple services for different players

ERDF VENTEEA project 2M- 1.3MWh system

Results for 2 days test at TSO level : 99.5% of time service was provided in expected band of power according to Δf

Saft Energy Storage Systems, January 2018

Conclusions of VENTEEA project

- Availability of 94% during 304 days of demonstration
- Up to 400% throughput per day
- Overall energy efficiency of 85%
- 12 services tested succesfully
- Multi-services approach planned day-ahead tested and validated
- Qualification by RTE (Frebch TSO) to participate in frequency regulation market

