Environmental Impacts

Installation of Seawater Desalination Plant at Thalayadi

This is not an ADB material. The views expressed in this document are the views of the author/s and/or their organizations and do not necessarily reflect the views or policies of the Asian Development Bank, or its Board of Governors, or the governments they represent. ADB does not guarantee the accuracy and/or completeness of the material's contents, and accepts no responsibility for any direct or indirect consequence of their use or reliance, whether wholly or partially. Please feel free to contact the authors directly should you have queries.

SWRO Plant Location

The proposed land identified to establish SWRO plant is located in:

- Vadamarachchi East Divisional Secretariat (DS) (consists of 18 GN divisions)
- Maruthankerny GN Division (consists of 3 villages)

Thalaiyadi village

RODP Components

- Intake structure (ultimate capacity of 48MLD)
- •SWRO Treatment Unit
- Outfall structure (24MLD & 48MLD)
- Potable Water
 Conveyance facilities
 Storage tank (10,000 m3)
 Pumping station
 8 km long 800mm dia. main from RODP to delivery point

Coast and Water

Key Possible Environmental Issues

- Impacts due to Extraction of Sea water (Impingement & Entrainment)
- Impacts due to Concentrated Brine Discharge
- Impact on Terrestrial flora/fauna
- Impact on marine life

Investigations carried out

- Bathymetric survey (before & after monsoon 2 times)
- Water level / current measurements (all 4 seasons)
- Water quality measurements (all 4 seasons)
- Numerical modelling of brine discharge (simulate all 4 seasons with average & extreme conditions)
- Marine biological Survey
- Terrestrial **Ecological Survey**

Coast and Water

Existing Environment Plant Area

- 200m x 200m land area
- Scrubs and bushes common to coastal lands
- Entire plant area consists of a sandy surface
- No economic or social activities
- No private land acquisition
 No evacuation of people or their livelihood related infrastructure buildings

Modern state-of-the-art hydraulics laboratory

Coast and Water

Possible Impacts due to Intake

Seawater a habitat which contains an entire ecosystem

loss of Aquatic life and biodiversity
 Animals > mesh – injury or death due to impinging

effect

Animals < mesh – **Entrained** into the plant and killed by thermal and chemical alterations.

Mitigation by Selecting a Suitable Location

- no hard substrates such as coral reefs, sandstone reefs & rock reefs
- Sea grasses were not present
- the entire study area is consists of pure sand

Not a sensitive Marine Environment

Impact to the marine environment is minimal & suitable to locate effluent discharge.

Sand Bed

Mitigation Measures..

Impact to the Marine life

Selecting a location with low marine sensitivity

Entrainment

Providing screens with small mesh

Impingement

Reducing the intake velocity as much as possible Velocity below 0.15 m/s is recommended

No significant impacts

Coast and Water

no mitigation is needed

Contactor to follow Best Technology Available

Flat bed is preferred to install the intake structure

Possible Impacts due to Discharge

Salinity increase (Excess Brine)
Increase sediments in water

Coast and Water

Can minimize by achieving proper dilution

Modern state-of-the-art hydraulics laboratory

12/12/2017

Searching for better Dispersion through Numerical Modelling

Dispersion characteristics depends on sea state

- Wave Climate Modelling to predict the wave climate through out the year
- Hydrodynamic Modelling to predict the flow condition around the area
- Dispersion Modelling to observe the dispersion pattern of Brine

Near Field Modelling (CORMIX software)

- Far Field Modelling (Mike 21 AD Model)

Coast and Water

Wave Transformation ______MIKE 21 SW Model

Hind-cast data from global wind & wave model of (UKMO)

- 5 1/2 years (2010-2015) of data
- at 6 hourly intervals

SW

NE

Total number of 8028 data.

					2
	Wave	Climate	Wave Dis		
Period	Occurrence level	Wave Height (m)	Dominant directions	% of occurrence	
W Monsoon	50%	0.25	no specific		
	98%	0.35	direction	-	
IM1 period	50%	0.25			
	98%	1.05	50° to 110°	87.9	
NE Monsoon	50%	0.95			
	98%	1.45	30° to 90°	96.2	
	50%	0.35			
IM2 period	98%	1.25	20°-110°	75.9	

Wave pattern at 13m depth nearshore (Transformed)

Wave pattern at

2000m depth offshore

Modern state-of-the-art hydraulics laboratory Coast and Water

Hydrodynamic Condition _ MIKE 21 HD Model

Ambient sea state is generated on the computer model and calibrated with measured parameters.

Water level & Current measurements 2 weeks period in each monsoon;

Mar – Apr 2016 Sep – Oct 2016 Feb 2017 Jul 2017

Sea Status

Coast and Water

- Water quality Good
- Current pattern Average
- Water level max variation 0.4m

 Bathymetry (steep slope upto 7m depth, moderate slope upto 11m depth & mild slope thereafter)

Well-mixed and quite dynamic marine environment

Mixing Characteristics

Near Field mixing

- Close to source
- Region of buoyant jet mixing
- Source properties dominate mixing

Far field mixing

Coast and Water

Ambient conditions dominate mixing

• No single model can cover these different scales efficiently and accurately

Cormix & MIKE 21 AD Model

Factors considered...

Discharge

Near field governs the jet properties

Diffuser system (single / multi port) If multi port, effective number of diffuser units (2, 3, 4, 5, 6, 10) Alignment of the diffuser port (45°, 50°, 60°)

Discharge velocity (> 3m/s)

Depth of discharge location (8m, 9m, 10m) Slope of the sea bed (sloping bed provides more dispersion)

More dispersion on dynamic area

Water Demand	/ater Demand (m3/dav)		Intake		Reject / Discharge		No. of	Diffuser	Discharge (jet)
		(%)	m3/day	m3/s	m3/day	m3/s	Diffusers	Diameter (m)	velocity (m/s)
Current	28500	45	63333	0.73	34833	0.40	3	0.2	4.28
demand (max)	28500	50	57000	0.66	28500	0.33	3	0.2	3.50
Future	50000	45	111111	1.29	61111	0.71	5	0.2	4.36
expansion (max)	50000	50	100000	1.16	50000	0.58	5	0.2	3.57

Alternative Locations for Intake & Outfall

Proposed point	Туре	Depth (m)	Distance from the shoreline (m)
L3		8	300
L2	Outfall	9	400
L1		10	500
P3		11.3	700
P2	Intake	11.6	800
P1		11.8	900

3300

3200

3100 -

3000

Dispersion of Brine Plume

۲ ۳

Excess brine concentration beyond 22m from the point of discharge is obtained as 0.48 ppt

Coast and Water

	station of Debug and Disco Olympic NVO				
urf)	ulauon-5_brine.pro = Flow Class: NV2	Concent	ration Excess Isoline	s –	5% at 11.9 m
	1.0				10 % at 5.5 m 15 % at 3.5 m
0.8					20 % at 2.6 m 25 % at 2.2 m
0.6					50 % at 1.2 m 75 % at 0.8 m
	0.4			-	100 % at 0.0 m WQS - CCC
	0.2			-	Ambient current direction Discharge point
	0.0+75 50 25 20	15			
	-0.2				
	-0.4			/	
	-0.6				
	-0.8			-	
	-1.0 + + + + + + + + + + + + + + + + + + +	4 6	8	10	12 14
	Distance from	Excess	Brine		Actual
	noint of	concen	tration	Dilutio	Brine
	discharge (m)	0/	nnt	n	concentra
	uischarge (iii)	70	ppr		tion
	1	100	32.00	0.82	64.00
	2	70	22.40	1.17	54.40
	3	35.7	11.42	2.29	43.42
	4	24.7	7.90	3.31	39.90
	5	16.9	5.41	4.84	37.41
	6	13	4.16	6.29	36.16
	8	9.1	2.91	8.99	34.91
	10	7.2	2.30	11.36	34.30
	12	5.3	1.70	15.44	33.70
	14	3.7	1.18	22.11	33.18
	16	2.5	0.80	32.73	32.80
	18	2	0.64	40.91	32.64
	20	1.7	0.54	48.13	32.54
	22	1.49	0.48	54.91	32.48
	beyond 25	0.6	0.19	136.35	32.19
	beyond 50	0.3	0.10	272.71	32.10
	beyond 100	0.025	0.01	3272.50	32.01

Proposed system to minimize the impact

Discharge

- Sloping bed is preferred to increase dilution
- Multi port diffusers are proposed
- Minimum distance from the shore to reduce the cost
- Proper gap between intake & discharge point is maintained to reduce recirculation

Dispersion in Far Field

- Far field: MIKE 21 Hydrodynamic and Advection-Dispersion Model (HD & AD)
- 32 scenarios all 4 four seasons (NE, SW & 2 inter monsoons), average (50% occurrence) & peak (98% occurrence) wave conditions, spring & neap tidal variations and recovery rates (45% & 50%) [m]

Excess Brine Concentration			
Excess (ppt)	Excess (%)	Dilution	
0.32-0.48	Above 1%	81.8	
0.16-0.32	Above 0.5%	163.6	
0.032-0.16	Above 0.1%	818.1	
0.008-0.032	Above 0.025%	3272	
0.006-0.008	Above 0.02%	4363	
0.004-0.006	Above 0.0125%	6545	
below 0.004	below 0.006%	13090	

Not significant – No impact to the far field

Modern state-of-the-art hydraulics laborator Coast and Water

0.00

0.00

[m]

Impact Zone

Impact zone is limited to a radius of **20-22m** from the point of discharge.

Lesson learnt from the Project

Impact of water extraction & intake structure can be mitigated through

Selecting a proper location

- Adopting a proper design for the structure
- Adopting a proper installing methodology

Impact due to brine discharge can be mitigated through

Selecting a proper location Adopting a proper discharge mechanism Introducing a effective diffuser system

Impact due to flora & fauna during construction can be mitigate though

- Adopting a proper management plan
- Performing conformity surveys before construction
- Translocation of protected species (marine) if they exists
- Translocation of plants if required
- Replanting buffer zones
- Proper monitoring mechanism

Key Personnel involvement for EIA

Name and Title	Expert /Work Allocation		
Dr. Mahesh Jayaweera & Dr. Jagath Manathunga	Environmental Expert		
Dr. Rekha Maldeniya & Mr. Arjan Rajasooriya	Marine Biologist		
Ms. Samangi Hewage & Ms. Maheni Samarakoon	Terrestrial Ecologist		
Dr. K. Arulanathen & Dr. H.B. Jayasiri	Biological Oceanography		
Mr. Jinapala Kiribandage	Sociologist		
Ms. Manori Fernando & Dr. K. Raveenthiran	Coastal Engineering & Numerical Modelling Expert		
Ms. Kaushalya Subasinghe	Hydraulic Engineering Expert		

Modern state-of-the-art hydraulics laboratory

Coast and Water

Thank you

Modern state-of-the-art hydraulics laboratory

12/12/2017