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= Introduction

* the Energy Technology Perspectives Roadmap Series
* the Hydrogen and Fuel Cells Technology Roadmap

= Hydrogen
* |In the transport sector
* |In the buildings sector

" Key findings & actions
= Questions and discussion
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Hydrogen stations for the 2DS high H, Scenario

in the United States, EU 4 and Japan
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Note: By the end of 2015 already 100 hydrogen stations are planned to be builtin Japan.
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= Building out a fueling infrastructure network would require consistent

dedicated funding
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Hydrogen production costs without T&D for the 2DS high H, Scenario
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= But excess grid power could potentially become an
economically viable generation pathway

= carbon taxes can improve the economics
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= Fuel Cell Electric Vehicles (FCEVs) can achieve a mobility service compared to
today’s conventional cars at potentially very low well-to-wheel carbon emissions
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Specific PLDV stock on-road WTW emissions by technology for
the United States, EU 4 and Japan in the 2DS high H, Scenario
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= FCEVs offer comparable carbon benefits to Plug-in Hybrid EVs
but with the potential for superior performance
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Ene-Farm fuel cell micro co-generation cumulative sales,
subsidies and estimated prices, 2009-14

usb

2009 2010 2011 2012 2013 2014
m Cumulative units =e==Estimated price —=m=Subsidy
installed without subsidy

= The price of Ene-Farm fuel cell micro co-generation systems
has fallen by more than 50% since 2009.
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= By 2050, the share of FCEVs on total PLDV stock is set to be 25%.

= Based on the assumed large-scale and rapid deployment of
hydrogen technologies in transport, the economic barriers linked
to the establishment of the hydrogen infrastructure are reduced.
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Hydrogen generation by technology for the 2DS high H, Scenario in the US, EU 4 and Japan

United States EU4

TWh

2010 2020 2030 2040 2050 2010 2020 2030 2040 2050 2010 2020 2030 2040 2050

M Natural gas M Natural gas and CC5 M Coal and CCS Biomass gasification B Average mix electrcity Low cost renewable electricity

= Steam methane reformation using NG and coal
= Biomass gasification
= Low cost renewable electricity
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= The contribution of FCEVs to cumulative total transport CO, emission
reductions between now and 2050 accounts for between 7% (United States)
and 10% (Japan).

= Between now and 2050, almost 3 GtCO, are saved by FCEVs in these regions.
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Direct subsidies for F EV roll-out
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Annual share of subsidy on petroleum tax income

80%

60%

40%

20%

-20%

With rapid market uptake and fuel tax exemption of hydrogen, FCEVs could be

entirely cost competitive 15 to 20 years after market introduction

Until 2035, around USD 90 billion would need to be spent to achieve parity of
costs of FCEVs with high efficient gasoline PLDVs, and to bring on the road 30

million FCEVs in the United States, EU 4 and Japan.

Share of direct FCEV subsidy on

petroleum tax income
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Fuel economy
and low emission
vehicle policies

Low carbon/
renewable fuel
regulation

Vehicle “perks”
and consumer
information

Carbon pricing

Grid integration
measures and
easy grid access

Benefits stacking

Codes and
standards: safety,
metering, type
approval

Natural gas-
hydrogen blend
shares

H Transport

. Stationary

W dC

tions

www.iea.org

.
-

Establish and strengthen fuel economy regulation and incentivise efficient vehicles through monetary measures like feebate
schemes and CO, based vehicle taxation. Support the uptake of FCEVs through zero-emission-vehicle policies

Introduce the free use of public parking, the use of high occupancy vehicle (HOV) lanes, the use of bus lanes and the

\ _exemption from road tolls. Establish labelling schemes

Strengthen and harmonise international codes and standards necessary for safe and reliable handling and metering of
hydrogen in end-use applications and establish a performance-based global technical regulation for FCEV type approval

© OECD/IEA 2015
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PEM FC mabile [ Reduce real-warkd manefacturing costs to below UED B0 par kW through optimized manufacturing and reduced nasd for pracious metal, whils keeping Rfotims to at
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PEM FC stationary 0 howrs. Reduce sensitivity to hydrogen
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Data

= Electrolysers & Fuel cells
= T&D infrastructure (including H, stations)
= Carbon Capture and Sequestration
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Today’s carbon footprint for various hydrogen pathways and for
gasoline and compressed natural gas in the European Union

Decentralised electrolysis, grid electricity, compression 880 bar

Centralised electrolysis, wind electricity, pipeline T&D, compression 880 bar
Centralised NG SMR, pipeline T&D, compression 880 bar

Centralised NG SMR, gaseous truck T&D, compression 880 bar

Centralised NG SMR, liquefaction, liquid truck T&D, compression 880 bar

Centralised NG SMR with CCS, pipeline T&D, compression 880 bar

0 50 100 150 200
gC0O,eq per MJ hydrogen

B Production & conditioning at source B Transportation to market B Transformation near market M Conditioning & distribution

* Tradeoffs between production, distribution, and
storage costs, production capacity, and emissions

© OECD/IEA 2015
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Transport Variable Deployment

Gaseous tube
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High Near term
trailers
Centralised
. . . hyd'og;n
tquefied truck —y 1o dium High High Medium Medium Medium to SR
trailers long term
Hydrogen . . . Medium to Liquid or gaseous
pipelines High High Low High Low long term m;kit:g;,?g,:re
Liquid or gaseous trucking/pipeline
High cost sensitivity to economies
of scale and aggregation L

Decentralised
hydrogen

Liquid or gaseous

trucking/pipeline
m Liquid o/pipcine
hydrogen . -
e trucking/pipeline
station

Hydrogen
refueling
station

Scheme of hydrogen T&D and retail infrastructure as represented within the model
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Current performance of hydrogen systems in the transport sector

J Power or energy . Investment

Fuel cell vehicles 80 - 120 kW Tank-to-wheel USD 60 000- 150 000 km Early market

efficiency 100 000 introduction
43-60% (HHV)
Hydrogen retail 200 kg/day ~80%, incl. USD 1.5 million- - Early market
stations compression to 2.5 million introduction
70 MPa

Tube trailer Up to 1 000 kg ~100% (without USD 1 000 000 - Mature

(gaseous) for compression) (USD 1 000 per

hydrogen delivery kg payload)

Liquid tankers for Up to 4 000 kg Boil-off stream: USD 750 000 - Mature

hydrogen delivery 0.3% loss per day

* Unless otherwise stated, efficiencies are based on lower heating values (LHV).
** All power-specific investment costs refer to the energy output.

Notes: HHV = higher heating value; kg = kilogram; kW = kilowatt.

* |nvestments needed to reduce costs and improve performance

© OECD/IEA 2015
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Existing public hydrogen refuelling stations and targets announced by hydrogen initiatives
Planned stations

Country or region Existing hydrogen refuelling stations 2015 2020

Europe 36 ~80 ~430
Japan 21 100 >100
Korea 13 43 200
United States 9 >50 >100

Existing FCEV fleet and targets announced by hydrogen initiatives

Planned FCEVs on the road
Country or region Running FCEVs
2015 2020

Europe 192 5000 ~350 000
Japan 102 1 000 100 000
Korea 100 5000 50 000

United States 146 ~300 ~20 000

Refueling and vehicle infrastructure are already emerging in key regions

© OECD/IEA 2015
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Cumulative annual cash flow
of a hydrogen refueling station network

How much will it cost?
H, refueling station:g"'g%sh‘flow curve

ww.iea.org

Measures for optimising the business case:

m Reduction of investment costs <}

m Reduction of operational expenses \

m Improvement of utilisation

m Public support \
/ AN

N

Valley of Death

10 to 15 years p

Due to high costs and under-utilisation of the hydrogen refueling
infrastructure, the “valley of death” can last for 10 to 15 years.

Small and clustered stations are needed to minimize the time of
negative cash flow.
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Supplemental Slides - Summary

= Techno-economic assumptions and parameters
= Hydrogen and fuel cells for variable renewable energy integration
= Hydrogen and fuel cells in industry and buildings
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, in industry and buildings
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Power or Energy Investment

Fuel cell micro 0.3-25 kW Electric: <20 000 USD/kW 60 000- Early market
co-generation 35-50% (HHV) (home system, T kW,) 90 000 introduction
Co-generation: <10 000 USD/kW hours
up to 95% (commercial system, 25 kW,)

* = Unless otherwise stated efficiencies are based on LHV.
** = All investment costs refer to the energy output.

Motes: 1 kW, = kilowatt electric output.

=  Fuel cell micro co-generation systems are either based on a PEMFC or a solid
oxide fuel cell (SOFC), the latter providing much higher temperature heat.

= Although systems with up to 50 kW electrical output exist, most commercially
available systems have electrical power outputs of around 1 kW, therefore
being insufficient to fully supply the average US or European dwelling.

© OECD/IEA 2015
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=== Heat network

Why Hydrogen?

www.iea.org
]

Today

=== Electricity grid Liquid and gaseous fuels and feed-stocks T&D === Hydrogen

= Hydrogen is a flexible energy carrier that can be produced from any regionally
prevalent primary energy source

= Hydrogen can be effectively transformed into any form of energy for diverse
end-use applications

© OECD/IEA 2015
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Energy carrier

carrier, hydrogen can be
ormed to electricity using

Surplus, low-value renewable electricity

split water into H2 and O2 with
electrolysers
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H, based “power-to-x” trajectories

Pawer—ta—pawer

I Pawer—to—pawer

Power-to-gas (blending) E

cecicty 200 ) iecroy s By conpresiop 0D T

Power-to-gas (methanation) ; Po;ver-tc;-pn wer

Met}'ia- Com-
E'ect"f'w
e

Power-to-fuel i Pow er—to-po wer

Co m-

* Hydrogen based electricity storage applications can include power-to-power,
power-to-gas and power-to-fuel trajectories.

* Round trip efficiencies are low — the availability of low value, surplus
renewable electricity is a prerequisite for H, based electricity storage

© OECD/IEA 2015
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Production costs decline with annual production

US DOE

- 2007 estim

2014 estim

® 2020 target

® Ultimate ta

T T
0 100 00O 200 000 300 000 A00 DOO 500 000 ® Low
Annual production

Although current PEMFC systems for FCEVs cost around

USD 300 to USD 500 per kW, cost can be reduced dramatically
with economies of scale.
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ate
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Cost of PLDVs by technology as computed in the model for the United States
rrTTT— e L2030 L 200 ]t

Conventional ICE gasoline 28 600 30900 32 300

Conventional ICE diesel 29 300 31 700 33100 usb
Hybrid gasoline 30 000 31 800 33 200 usD
Plug-in hybrid gasoline 32 400 33 200 34 400 usbD
BEV (150 km) 35400 32 800 34 000 usD
FCEV 60 000 33 600 33 400 usD

Techno-economic parameters of FCEVs as computed in the model for the United States

_mm“

FCEV costs 60 000 33 600 33 400
Thereof
Glider* 23100 24100 25600 usbD
Fuel cell system** 30 200 4300 3 200 usD
H, tank** 4300 3100 2800 usD
Battery** 600 460 260 usb
Electric motor and power control** 1 800 1 600 1400 usD
Specific costs
Fuel cell system (80 kW) 380 54 40 USD/kW
H, tank (6.5 kg H,) 20 14 13 USD/kWh
Battery (1.3 kWh) 460 350 200 USD/kW
Other parameters
Tested fuel economy 1.0 0.8 0.6 Kg H,/100 km
Life time 12 12 12 Years

* future cost increase is due to light-weighting, improved aerodynamics, low resistance tyres and high efficient auxiliary devices.

#* future costs are based on learning curves with learning rates of 10% (H; tank), 15% (electric motor, power control, battery) and 20%
(fuel cell system) per doubling of cumulative deployment.
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Power or . Initial

Steam methane 150-300 MW

reformer, large

scale

Steam methane 0.15-15 MW

reformer, small

scale

Alkaline Up to 150 MW

electrolyser

PEM electrolyser Up to 150 kW
(stacks)

Upto 1 MW

(systems)

SO electrolyser Lab scale

70-85%

~51%

65-82% (HHV)

65-78% (HHV)

85-90% (HHV)

400-600 USD/kW 30 years Mature
3 000-5 000 USD/kW 15 years Demon-
stration

850-1 500 USD/kW 60 000- Mature

90 000 hours

20 000-
60 000 hours

1 500-3 800 USD/kW Early market

- ~1 000 h R&D

* = Unless otherwise stated efficiencies are based on LHV.

#* = All investment costs refer to the energy output.

Notes: PEM = proton exchange membrane; SO = solid oxide.

= Around 48% of hydrogen is currently produced from natural
gas using the SMR process

© OECD/IEA 2015
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20 s Alkaline (commergal)
' PEM (commercial) and
advanced alkaline (R&D)

1.5
o =
= >
L. e
% E‘l Solid oxide (R&D)
w —
x c 1.0
5 3
T

0.5 [

v 4———» Usual operating range of current density
< >« >« >
0 >
0 0.5 1.0 1.5 2.0

Electrolysis current density (A/cm?)

B
Lower capital cost

Note: Afcm’ = ampere per square centimetre.

= Although alkaline electrolysers are a mature and affordable technology,
PEM and SO electrolysers show a greater potential to reduce capital costs
and to increase efficiency.
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Production volumes of fuel cells according to application

Capacity additions

B Stationary

W Transportation
£
5 mmmm Portable
2 20 £
= 3
3
£ Units by application
=@==Stationary
10
=e=Transportation
0 Portable

= Currently, more than 80% of all fuel cells sold are used in
stationary applications.
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LCOH, as function of electricity and carbon price

Levelised costs of H, USD/MWh
Levelised costs of H, USD/MWh

50 =mmmmmmmmmmmmmmm— e e mm e ————
G I T T T T T T 1 D T T T T T 1
0 20 45 70 85 120 145 175 0% 20% 40% B60% 80% 100%
Electreity prrlce USD/MWh Annual utilisation factor
Carbon price USD/tCO,
PEM EL PEM EL sensitivity e PEM EL 100 USD/MWh e——PEM EL 60 USD/MWh
NG CCS low NG CCS medium PEM EL 20 USD/MWh s NG CCS medium
e NG CCS high NG low = NG CCS high NG CCS low
= = = NG medium = = = NG high

= Low-carbon electrolytic hydrogen requires low-cost
renewable electricity and a combination of higher natural
gas and carbon prices to be cost competitive.
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Variable renewable power in the 2D

Bomassand waite 0 Coal with OCS
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m 2011

W 2050 2DS

m 2050 2DS storage
breakthrough

United States

= Under the 2DS, electricity storage accounts for up to 8% of total installed
power capacity.

= Annual electricity output from energy storage reaches shares of between 3%
and 9% of total VRE power generation.

© OECD/IEA 2015
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Hydrogen-based el icity storage
P o
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&
Applications ,/ \\ Technolog’y,—--N Siting
A 4 . ’r, \\
N s
JHs VB
Large-scale ; \s
wind PV: - \o
: < I H
gidsupport , jgy & | CAES : ,P
SE 3 \ !
o 38 2 \ 4
cC m o N\
= =g = 2 S ,/’ o)
o 2 7]
3 o | Flywheel | £
- o s8]
2 100 kW =
o A
[~
10 kW
2
3
1 kW g
L
I I I I I I F I I I I I I F
Microsecond Second Minute Hour  Day  Week Season Microsecond Second Minute Hour  Day  Week Season

Discharge duration

Note: CAES = compressed air energy storage; PHS = pumped hydro energy storage.

Discharge duration

= Hydrogen-based electricity storage covers large-scale and long-term storage applications.
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Power-to-power
(including
underground
storage)

Underground
storage

Power-to-gas
(hydrogen-
enriched natural
gas, HENG)

Power-to-gas
(methanation)

Power or
energy
capacity

GWh to
TWh

GWh to
TWh

GWh to
TWh

GWh to
TWh

29% (HHV, with
alkaline EL) -
33% (HHV, with
PEM EL)

90-95%, incl.
com-pression

~73% excl. gas
turbine (HHV)

~26% incl. gas
turbine (PtP)

~58% excl. gas
turbine (HHV)

~21% incl. gas
turbine (PtP)

iea " Hydrogen-based large-s

Secure e Sustainable e Together

Investment cost* *

1 900 (with alkaline EL) -

6 300 USD/KW (with PEM

EL) plus ~8 USD/kWh for
storage

~8 USD/kWh

1 500 (with alkaline EL) -
3 000 USD/KW (with PEM
EL), excl. gas turbine

2 400 (with alkaline EL) -
4 000 USD/KW (with PEM
EL), incl. gas turbine (PtP)

2 600 (with alkaline EL) -
4 100 USD/KW (with PEM
EL), excl. gas turbine

3 500 (with alkaline EL) -
5 000 USD/kW (with PEM
EL), incl. gas turbine (PtP)

e energy storage

www.iea.org

20 000 to
60 000 hours
(stack lifetime
electrolyser)

30 years

20 000 to
60 000 hours
(stack lifetime
electrolyser)

20 000 to
60 000 hours
(stack lifetime

electrolyser)

Maturity

Demonstration

Demonstration

Demonstration

Demonstration

* = Unless otherwise stated, efficiencies are based on LHV.

** = All investment costs refer to the energy output.

Notes: excl. = excluding; incl. = including; PtP = power-to-power; GWh = gigawatt hour; TWh = terawatt hour.
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= |n the long term, power-to-fuel applications offer the lowest
marginal abatement costs to integrate otherwise curtailed
renewable power in the energy system.
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Depleted oil| Depleted Aduifers Lined rock| Unlined rock
fields gas fields 9 caverns caverns

Safety

Technical feasibility + ++ ++ ++ 0 -
Investment costs ++ 0 o (o] + +
Operation costs ++ - 0 + ++ +

Source: adapted from HyUnder (2013), Assessment of the Potential, the Actors and Relevant Business Cases for Large 5cale and Seasonal
Storage of Renewable Electricity by Hydrogen Underground Storage in Europe - Benchmarking of Selected Storage Options.

= A geological formation can be suitable for hydrogen storage if:
* tightness is assured,

* the pollution of the hydrogen gas through bacteria or organic and non-
organic compounds is minimal, and

* the development of storage and the borehole is possible at acceptable costs.
* Actual availability of suitable geological formations is another limiting factor.

© OECD/IEA 2015
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Measuring and control

Odarisation

Limitations on the blend s

\

hare of

www.iea.org
]

Engines
CNG tanks

Gas burners

Fan burners
Fuel cells

Condensing boilers

Appliances

Stirling motor

Gas stoves

Co-generation plants

B Further research
needed

Adjustment &
modification
needed

W H2 blending
uncritical

Blending hydrogen into the natural gas grid faces several limitations:

H, can embrittle steel materials (pipelines & pipeline armatures), which necessitates
upper blending limits of around 20% to 30%, depending on the pipeline pressure and
regional specification of steel quality.

The much lower volumetric energy density of hydrogen compared to natural gas
significantly reduces both the energy capacity and efficiency of the natural gas T&D
system at higher blend shares.
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= The Roadmap is a rich source of techno-

economic parame

ters from lead

hydrogen researchers around the world
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i
e Power or . . Initial S
m
Alkaline FC Up to 250 kW ~50% (HHV) USD 200-700/kw 5000-8 000 Early market
hours
PEMFC 0.5-400 kW 32%-49% (HHV) USD 3 000-4 000/kw ~60 000 Early market
stationary hours
PEMFC mobile 80-100 kw Up to 60% (HHV) USD ~500/kw <5 000 hours Early market
SOFC Up to 200 kW 50%-70% (HHV) USD 3 000-4 000/kW  Upto 90000 Demon-
hours stration
PAFC Up to 11 MW 30%-40% (HHV) USD 4 000-5 000/kwW 30 000- Mature
60 000 hours
MCFC KW to several More than USD 4 000-6 000/kwW 20000-  Early market
MW 60% (HHV) 30 000 hours
Compressor, - 88%-95% USD ~70 /kWH, 20 years Mature
18 MPa
Compressor, - 80%-91% USD 200-400/kWH, 20 years  Early market
70 MPa
Liquefier 15-80 MW ~70% USD 900-2 000/kw 30 years Mature
FCEVon-board S5to6kgH, Almost100% (without USD 33-17/kWh (10 000 15 years  Early market
storage tank, compression) and 500 000 units
70 MPa produced per year)
Pressurised 0.1-10 MWh  Almost 100% (without USD 6 000-10 000/MWh 20 years Mature
tank compression)
Liquid storage  0.1-100 GWh  Boil-off stream: 0.3%  USD 800-10 000/MWh 20 years Mature
loss per day
Pipeline - 95%, Rural: USD 300 000- 40 years Mature
incl. compression 1.2 million/km Urban:
USD 700 000-1.5 million
/km (dependent on
diameter)

* = Unless otherwise stated efficiencies are based on LHV.
*= = All investment costs refer to the energy output.
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