This is not an ADB material. The views expressed in this document are the views of the author/s and/or their organizations and do not necessarily reflect the views or policies of the Asian Development Bank, or its Board of Governors, or the governments they represent. ADB does not guarantee the accuracy and/or completeness of the material's contents, and accepts no responsibility for any direct or indirect consequence of their use or reliance, whether wholly or partially. Please feel free to contact the authors directly should you have queries.

Country Safeguard Systems Sub-regional Workshop Cumulative Impact Assessment

Vaqar Zakaria

Tbilisi, Georgia May 2016

Cumulative Impacts

"The environmental and social impacts that result from the incremental impacts of one action/activity when added to past, present, and reasonably foreseeable future actions/activities."

"death by a thousand cuts"

ESIA vs CIA Basic Conceptual Assessment Paradigm Change.

- 1. Focus: Project Impacts vs <u>Condition</u> of Valued Environmental and Social Components (VECs)*.
- 2. Scope: Expanded spatial and temporal boundaries for the analysis.

* VECs are environmental and social attributes that are considered to be important in assessing risks; they may be physical, ecosystem services, natural processes, social conditions, cultural aspects.

Valued Environmental and Social Components (VECs)

Sensitive environmental or social receptors, affected resources, ecosystems, or communities

- Air shed.
- Watershed.
- Forest resource.
- Resident wildlife.
- Migratory wildlife.
- Fisheries resource.
- Historic/Socio-cultural resource.
- Land use.
- Community Structure.
- Coastal zone.
- Recreational.

FOCUS: PROJECT CENTERED VS VEC CENTERED

SCOPE: EXPANDED TEMPORAL AND SPATIAL BOUNDARIES

Six-Step Process

Good Practice Handbook

Cumulative Impact Assessment and Management: Guidance for the Private Sector in Emerging Markets

Ecological Zones in the Basin

Study Area – Poonch Basin Main River and Tributaries

The VECs

- Fish Fauna
- Sediment Load of the River
- Landscape

Fish Baseline – Indicator Species

Tor putitora

Labeo dyocheilus

Schizothorax plagiostomus

Botia rostrata

Clupisoma garua

Glyptothorax kashmirensis

Present Ecological Status of EF Sites

EF Site No.	Site		Description	Present Ecological
				State
1	Kallar Bridge	Situ the	ated upstream of the full supply level of reservoir.	С
2	Borali Bridge	Situ	ated between the weir and the tailrace	С
3	Gulpur Bridge	e Situ tailra	ated c. 7 km downstream of the ace.	С
4	Billiporian Bri	idge Situ tailra sup	ated c. 16 km downstream of the ace, c. 12 km upstream of the full ply level of Mangla Dam.	С
Ecolo Cate			Description of the Habitat	
		А	Reference Condition.	
		В	Slightly Modified	
		С	Moderately Modified	
		D	Largely Modified	
		Е	Seriously Modified	
		F	Critically/Extremely Modified	2

Planned Hydropower Projects

Modeling of Environmental Flows at Basin Level

Integrated scenario-based approach: DRIFT

Key features: approach; hydrology; indicators; DSS

DRIFT = Downstream Response to Imposed Flow Transformation

How Scenarios help define the Development Space

Planned Hydropower Projects

Cumulative Impact on Ecological Integrity of Poonch River

B = blue, *B*/*C* and *C* = green, *C*/*D* = white, *D* = orange, No river remaining = red

River Reach		2013	Sequential implementation of:					
			Gulpur HPP	Parnai HPP	Sehra HPP	Kotli HPP	Rajdhani HPP	
Poonch River	Parnai weir	В	В	C/D	C/D	C/D	C/D	
upstream of LoC	to LoC							
Poonch River	LoC - 5 km	B/C	B/C	C/D	D	D	D	
downstream of LoC	10	B/C	B/C	С	No river remaining	No river remaining	No river remaining	
	15	B/C	B/C	С	D	D	D	
	20	B/C	B/C	С	D	D	D	
	25	B/C	B/C	С	D	D	D	
	30	B/C	B/C	С	С	No river remaining	No river remaining	
	35	B/C	B/C	С	С	D	D	
	40	B/C	B/C	С	С	D	D	
	45	B/C	No river remaining	No river remaining	No river remaining	No river remaining	No river remaining	
	50	B/C	No river remaining	No river remaining	No river remaining	No river remaining	No river remaining	
	55	B/C	D	D	D	D	No river remaining	
	60	B/C	B/C	B/C	С	C/D	No river remaining	
	65	B/C	B/C	B/C	С	C/D	No river remaining	
	70	B/C	B/C	B/C	С	C/D	No river remaining	
	75	B/C	B/C	B/C	С	C/D	D	
	80	B/C	B/C	B/C	С	C/D	D	
	85	B/C	B/C	B/C	С	C/D	D	
	90	B/C	B/C	B/C	С	C/D	D	
Mendhar Nullah		В	В	D	D	D	D	

Decision of the EPA and Wildlife Department

Irrespective of the environmental design of the individual projects, in combination the projects planned will have a detrimental and irreversible impact on the ecology of Poonch River. The Wildlife Department and the EPA approved the project with the condition that all future projects will have to prove net gain in biodiversity in the national park.

Institutional Arrangement for Implementation of the BAP

Lessons Learnt from the Gulpur Project

From 'Business as Usual' to 'Collaborative Management': Management approach involving four frameworks

The Perception Problem

- Project owners see their responsibility ending at the property boundary and expects the government to take care of all the issues outside using tax money
- There is reluctance to engage on 'complicated problems' out side which are caused by others and over which project owners have little control
- The governments tend to see the issue as that of development vs environment, and are not aware of win-win opportunities to promote sustainable development that almost always exist

Institutional Challenges - Multiple Responsibilities at the Basin Level

- Regulatory: EPA, forest and wildlife departments, mining department
- Administration: local governments, municipal authorities, police
- Policy and coordination: Wildlife management board, forest management board, boards of autonomous organizations
- Political: Public ownership and commitment
- New coordination mechanisms have to be created to cater the special needs of the basin

Leadership and Ownership

- Coordination mechanisms do not function well without leadership from an institution.
- Leadership is best exercised by a government institution that has the legal mandate over the priority VECs.
- The private sector can bring in professionalism and best practices in management, and can benefit from reduced risks and enhanced reputation

Financing of Conservation

- While the projects struggle to finance environmental costs, financing of environmental costs outside the project area at the basin level becomes exceedingly difficult.
- The base case or business as usual is to expect the government to finance basin wide costs through the departments using tax revenues
- Special financing mechanisms or funds can be designed to collect the funds and divert them to organizations and institutions that can deliver conservation

The Way Forward

- Long term business and reputational risks are typically related to cumulative impacts
- The private sector has technical and management capacities that the government agencies often lack
- Public private partnerships in implementation of Cumulative Impact Assessments provide opportunities to build capacities and drive institutional and policy reforms