Climate finance and technology adaptation

- Korea case -

This is not an ADB material. The views expressed in this document are the views of the author/s and/or their organizations and do not necessarily reflect the views or policies of the Asian Development Bank, or its Board of Governors, or the governments they represent. ADB does not guarantee the accuracy and/or completeness of the material's contents, and accepts no responsibility for any direct or indirect consequence of their use or reliance, whether wholly or partially. Please feel free to contact the authors directly should you have queries.

2015. 12. 8 Sung-Sik Moon, Director General Department of Environmental Industry Support

Table of Contents

- I. KEITI Introduction
- **II. Green Public Procurement & GHG Reduction**
- **III. Domestic Waste Management Policy**
- V. Overseas Project on Waste to Energy

Key Functions and Programs

Environmental Technology R&D

Environmental Technology (R&D)
Planning, Evaluation, Management

Train professionals and provide information

- Train environmental Industry ·Technical professional and Create Jobs
- Collect Environmental Industry, 'Technical Information, Utilization and Education, PR

|--|

Certification Evaluation

- Operate Environmental Mark, Carbon Achievement Carbon score label
- Certification · verification environmental technology and certification of green technology

Develop environmental industry

- Develop environmental industry and support expansion to overseas market
- Environment loan, Eco-friendly creative economy center
- operation of 5 overseas offices

Distribute eco-friendly business models

- Promote green product life
- Promote eco-friendly management and low carbon management by company

Support environmental health · safety management

- Relieve environmental damage and manage chemical materials
- Manage eco-friendly product, support environmental health

 safety for the vulnerable social group

KEITI's overseas cooperation

414 environmental cooperation projects in 75 countries (2014)

Act on Promotion of Green Products Purchase

- Purpose: energy and waster savings, prevent wasteful use of resources and environmental pollution, contribute to sustainable development by encouraging green purchasing in public sectors
- Public org. are obliged by the Act to produce and report to MOE
 - Implementation Plan with voluntary GPP targets
 - Performance Report with the amount of green product purchased

Institutional arrangement of GPP in Korea

Performance of the GPP in Korea

 The total amount of green public purchase rose steadily following the adoption of the Act on Promotion of Green Purchase from 2005

Performance of the GPP in Korea

- The Act was instrumental in nurturing eco products and producers in both quantity and quality
- Market competitiveness of eco products increased in terms of price and quality

- The market share of eco-labeled products reached at 37 billion USD in 2014
- GPP play a key role in greening the relevant industries

Performance of the GPP in Korea

- The purchase of energy and water saving products resulted in 543,000 tons of CO₂ reduction in 2014 and 4.8 million tons of CO₂ emission reduction for the past 10 years
- The environmental benefits from GPP are 3.8 billion USD in 2014, and 12.3 billion USD

for the past 9 years

Stepwise technologies for waste treatment in Korea

Advantages and disadvantages of waste treatment technologies

 To build Resource Recirculation Society, Waste to Energy Activities have been under study and commercially utilized

Process	Advantage	Disadvantage
Incinerator (WTE)	 Decrease of Final Waste Sanitary Treatment Energy Recovery (Heat + Power) 	 High Construction and O&M Cost
Refuse Derived Fuel	 Combustible Waste Recycling Energy Recovery 	 Not economical (Low Yield & low sales cost) Difficult in Control
Organic Waste to Biogas	 CH₄ Production (To be used as fuel) Sludge to Compost 	High Cost & Technology
Landfill Gas to Energy	 GHGs Reduction (CH₄ Utilization) Energy Recovery (Heat + Power) 	Irregular LFG Production
Bioreactor + LFG Energy (Improved LFG Utilization)	 More GHGs Reduction(CH₄ Utilization) More Energy Recovery(Heat + Power) Landfill Early Stabilization 	 Added bioreactor system Cost

Cost comparison in each technology

• Comparison of Construction Cost in South Korea (Capacity of treatment : 1,000ton/day)

Process	Construction Cost(USD/30y)	Energy Recovery(%)	Endurance Period(year)	Total Operating Cost(USD)	Days of operation(day/year)
Incineration	600 million (Excl. Landfill construction)	20 ~ 30	30	450 million	330
RDF	200 million (Excl. Landfill construction)	10 ~ 15	30	300 million	265
Landfill Gas to Energy	120 million	5 ~ 10	30+20 (Depends on the site size)	60 + 10 million	365
Bioreactor + LFG Energy	130 million	7 ~ 15	30+10 (During +After operation)	75 + 5 million (During +After operation)	365

UNFCCC's CDM projects of LFG

Country	No.	Business item	Registration date	Reduction (tCO ₂ e/y)	IRR (%) Including CER
Peru	708	Huaycoloro landfill gas capture and combustion	2007.05	298,996	21.2
China	887	Shenzhen Xiaping Landfill Gas Collection and Utilization Project	2007.05	471,619	30.0
Korea	941	Sudokwon Landfill Gas Electricity Generation Project	2007.04	1,210,342	5.9
Mexico	1123	Ciudad Juarez Landfill Gas to Energy Project	2007.11	170,499	10.2

LFG Power Plant Project

- Demand for Korean model is high among the developing countries
- Economic and environmental benefit
- Greenhouse gas reduction → Reduce the risk of global Climate Change
- A strong chance as GCF business model

• 2000 2nd landfill opened for usage(1st landfill closed

• 2004 Acquired an ISO 14001 accreditation

KEITI

SUDOKWON Landfill Overview

SUDOKWON Landfill Overview

Eco-Friendly Sanitary Landfill Operation

- Quick, Safe & Sanitary landfill operating system
- Eco-friendly Waste management technology

Leachate Treatment Technology

- Design Capacity : 6,700 ton/d (Daily processing amount: 4,300 ton/d)
- Aim to 'Zero discharge Leachate Treatment System'

Solid Recovered Fuel Plant

- Design Capacity: 200 ton/d
- Converting wastes into fuel and energy

Sludge Recovery Plant
Capacity : 2,000 ton/d
Turning sewage sludge into fuel

CDM Project for Recycling LFG
 UNFCCC Issue more than 800,000 CO₂ tons of CERs annually to SL Corp.

50 MW LFG Power Plant & CDM Project

- Utilizing LGF generated from landfill waste processing as the source of energy
- → import-substituting effect by generating new and renewable energy
- Recognized by UNFCCC as a CDM project
- \rightarrow Actively engaging in international efforts to respond to climate change

Type of financing on Environmental Project

Governmental financial support

Grant & Loan combined support

PPP

ODA Fund

Joint International Localization

Attract investment to countries for export

R&D Support

Development of Landfill Power Plant at Lima, in Peru

Project

Backgroud

- Lima city's landfills emit a large amount of LFG and cause global warming even though the city has proper waste collection systems
- Collecting LFG utilizing it as fuel to produce electricity will reduce the GHG emissions and bring economic benefits

Executive Summary

- Waste generation : 7,918 ton/d
- Landfill size : 107 ha, waste in-take 1,500 ton/d

Project Summary

Project Scope : Construction of 7.4 MW LFG power plant, LFG collection system with bioreactor, Power generation system, power grid system
 Project Period : 22 years (Construction: 2 years, operation: 20 years)
 Project Cost : USD 26.69 million

Propulsion Details

- March 2012 : Completion of Feasibility Study supported by KEITI
- July 2015 : Submission of GCF Proposal (DOHWA → CAF → GCF Secretariat)
- Dec., 2015 : PPP proposal preparation & SPC establishment
- Early 2016 : Final approval of GCF proposal (expected)

KEITI

Expectation of Landfill Gas & CO2 emission reduction (Normal condition)

- LFG generated is estimated to be average of 61.2 m³/min during the project period
- Power production the LFG is expected to be up to 7.4 MW (average 6.43MW)
- Reduction of 5.4 million tons of CO₂eq for 20 years

Year	LFG emission (m³/min)	LFG collection (70%)	Baseline methane Emission (tCO ₂)	Average Power generation (MW)	Baseline Power Plant Emission (tCO ₂)	Project emission (tCO ₂)	Total Emission Reduction (1,000 tCO ₂ eq)	Cumulative Emission Reduction (1,000 tCO ₂ eq)
2016	72.86	51.00	200,962	5.30	26,022	3,361	224	440
2020	81.99	57.39	226,141	6.30	30,932	3,361	254	1,410
2025	89.86	62.90	247,853	6.30	30,932	3,361	275	2,747
2030	95.24	66.67	262,708	7.40	36,333	3,361	296	4,182
2034	98.40	68.88	271,416	7.40	36,333	3,361	304	5,386
Average	87.41	61.19	241,107	6.43	31,570	3,361	269	

KEITI

Benefits of the project

