

CONTENTS

- I. Introduction of Project
- **II. Waste-to-Fuel Technology**
- **III. Implementation in Korea**

Introduction of Project

1. Project Overview

Name	Support for the establishment of waste-to-fuel technology in the transport sector in Bangladesh		
Implemented by	The government of Republic of Korea and The Export–Import Bank of Korea		
Features	A joint consulting project with Asian Development Bank (ADB) as a part of the Knowledge Sharing Program (KSP)		

ase tudy in orea	 Production of the Tool Kits to Introduce the Waste-to-Fuel System Invitation Training
short term E	stablishment of the Implementation Plan of Waste-to-Fuel system
long term D	haka Public Transport System –economical/social/ecological sustainability system

- Analysis of the public transport system of Dhaka
- The case study of the waste-to-fuel system in Wonju city and finding implications
- The production of the introduction tool kits for the construction of a waste-to-fuel

system

- Workshops for performance improvement
- Establishment of the implementation plan of a waste-to-fuel project

3. Waste-to-fuel System in Korea

Introduce Waste-to Fuel system in Korea

Case Study of The Waste-to-fuel system in Wonju

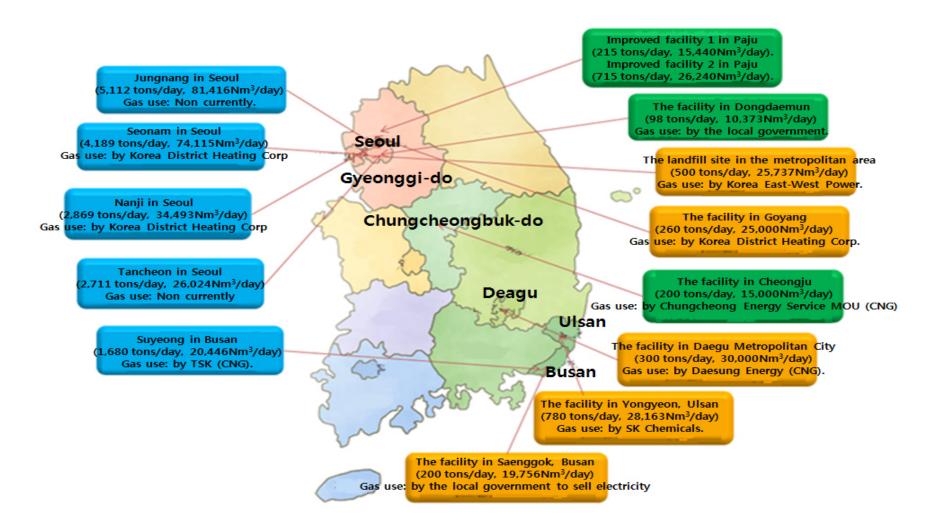
- Focus on : Basic information, Project costs including fixed and operating expenses, Financial structure analysis, Operating method and status, Success factors of the establishment and operation of the system, Development and improvement directions
- The system diagram, photos and video materials of the system are produced to ensure more effective understanding.

1. Comparison of organic waste treatment technology

Criteria	Principle	Economics
Waste-to-fuel	Technology that adds an adjuvant or employs the drying process to use the calorific potential of organic wastes and convert it into a fuel product	 While construction and installation costs are cheap, the use of calorific adjuvant and additives results in slightly high operation cost If no markets are found for the fuel product, it is considered waste requiring additional treatment cost
Anaerobic digestion	Technology that breaks down biodegradable organic matters in organic waste under stable anaerobic conditions	• High initial installation cost but requires not much power; produced gas can be used as fuel to bring down the operation cost
Composting	decomposable organic matters in organic waste under	 Installation cost of 80 million won/ton for a treatment facility with a capacity of 30 tons under automated system Installation cost of 50 million won/ton to treat 30 tons using the existing food waste-to- resource and reduction facility Lower installation and operating costs compared to other treatment methods
Incineration	Technology that reduces the volume, detoxifies and stabilizes by combusting combustible components in organic waste during a short period	 High installation and treatment costs as an integrated treatment facility encompassing an incinerator, construction, and civil engineering Costs to treat odor near the insert hopper and dryer and to treat incinerated ash Increased operation costs due to the use of supplementary fuel to secure heating source
Carbonization	Technology where organic waste is heated in a no or low oxygen environment to produce water and flammable gas, leading to pyrolysis that leaves carbonized inorganic matters behind	 Drying and decomposition using the cracked gas of the carbonization facility are possible Costs for the facility to prevent secondary pollution High installation costs as an integrated treatment facility
Solidification		 Low initial investment costs compared to other technology Increased operation costs due to the frequent use of chemicals When unable to be used as a landfill cover material, additional costs incur since waste treatment is required A Study on the Improvement of Organic Sludge Treatment Systems. Sudokwon Landfill

Site Management Corporation, p406.

2. Utilization of natural gas in advanced countries


	Vehicle fuel	Provision via natural gas lines	
Sweden	50% of vehicles fueled by natural gas	Gothenborg region 1,500 m³/hr (after quality improvement) Laholm region 500 m³/hr (after quality improvement)	
France	35% of the entire buses		
Germany	8% of vehicles (estimation)	Substitution rate of natural gas will be 6% by 2020.	

1. Waste-to-fuel system in Korea

1.1 Mass bio-gas production facilities in Korea

Source: Eco Energy Holdings

1. Waste-to-fuel system in Korea

1.2 Implementation Plan

Review on the commercialization of waste-to-fuel (including local and overseas cases)

• Overseas anaerobic digestion process

- Mostly wet digestion or dry digestion technologies are used for processing organic wastes in other countries. In case of Korea, the digestion days (HRT) of dry method are shorter (14 to 21 days) and the organic loading rates, gas and methane generation rates are faster than those of wet digestion.

Process title	Application site	Methane generation	Remarks
Dranco Process (Belgium OWS)	Salzburg in Austria Brecht in Belgium	140 m/100 cm	
Valorga Process (France Gaz de France)	Amiens in France Tilburg in Netherlands	60 m/ton	
Vegger Process	Vegger and Herning in Demark 80 m ³ /ton		75% Human waste + 25% Industrial waste
Mobius System (Finland)	Various sites including the demonstratio n facility in Minamiashigara	100-120 m ³ /ton	Food waste
Rem System (Austria)	Various sites including organic waste treatment facility in Nigata Prefecture	115 m³/ton	Food waste
Lietson System (Germany)	The demonstration facility in Aichi Prefecture	100-120 m ³ /ton Food waste	

1. Waste-to-fuel system in Korea

1.2 Implementation Plan

Investigation of organic waste-to-fuel technologies and Enhancement Cases

- Basic researches on domestic technologies
 - Researches on waste-to-fuel in Korea started from 1997
 - Researches in Korea on technologies to produce bio energy using organic wastes and bio-gas purification have been actively conducted since the introduction of new renewable policies and green growth strategies in 2000 (Green growth technology in environment, 2009).

Туре	Company name	Technology	Ownership	Targe waste	Site	Treatment volume (ton/d)
	Halla E&C	MSWAS	Korea	Food waste	4	100
	Seohee Construction	DRANCO	Belgium	Food waste	2	298
	Daewoo E&C	DBS	Korea	Livestock excretions and food waste	3	230
Exclusive	Samsung Engineering	BTA	Germany	Food waste	1	10
digestion	Taeyeong	-	Japan	Food waste	-	-
	GLE&G	-	Korea	Food waste	2	70
	Unison	-	Germany	Livestock excretions	1	20
	Ecodays	ECOPAD	Korea	Livestock excretions and food waste	3	130
Combined	Hyosung Ebara Engineering	-	Korea	Food waste	3	340
with sewage	Halla E&C	-	Korea	Food waste	2	40
Combined digestion	Halla E&C	-	Korea	Livestock excretions and food waste	1	80

Local methods for anaerobic digestion of organic wastes

Support for the establishment of waste-to-fuel technology in the Transport sector in Bangladesh

2.1 Overview

Organic waste-to-resource project in Wonju

- Supervising office: Gangwon Provincial Office
- Ordered by: Gangwondo Bioenergy
- Constructed by: Ecoenergy Holdings and Halla Energy & Environment
- Title: Organic waste-to-resource project in Wonju
- Construction period: 24 months from the beginning of construction

(including 6 months of test operation)

- Period: 20 years from the date of operation (Dec. 2012~Nov. 2032)
- Equipment and capacity
 - Capacity: 600Nm3/hour
 - Purification technology: Simplex 600

Source: Eco Energy Holdings

2.2 Project Background

- The ban on the ocean dumping of organic waste called for countermeasures
- Introduce the technology to convert waste resources to energy through new and renewable energy technology
- Secure alternative energy resources following the high value of a gas digester used in the existing sewage treatment center and high gas prices

2.3 Project Objective

- To lead the government's policy by converting biomethane to automotive fuel
- Develop and distribute new and renewable energy
- Boost the local economy by attracting private investment
- Reduce greenhouse gas emissions in the transport sector

2.4 Expected outcomes

Environmental aspects

- stable inland treatment of all organic waste can prevent environmental pollution in surrounding
- replacement of fossil fuel with biomethane can reduce greenhouse gas emissions and prevent global warming

Economical aspects

- by using part of biogas produced on-site, operation costs can be saved
- by linking with a project to reduce greenhouse gas, a new business model can be created
- the attraction of private investment will boost the local economy and create local jobs

Recycling

- reduce the total amount of waste
- new and renewable energy production can offer new measures to treat organic waste
- biomethane can replace fossil fuel as automotive fuel

2.7 Organic waste-to-resource project in Wonju

- Project and facilities overview
 - Intends to build a stable treatment facility for organic waste to energy and perform inland

treatment of waste subject to ocean dumping

Facility name	Capacity	Composition	
Incoming supply		Weighbridge, incoming area	
facility		Storage hoppers, etc.	
Pre-treatment	Pre-treatment facility 220 tons/day	Solid waste storage tank(2 kinds)	
facility		Selective crusher, fine crusher(2 kinds)	
Anaerobic digestion	naerobic digestion facility	• Waste storage tank, heated mixing tank, sterilized storage tank, anaerobic digester (wet, mesophilic digestion)	
facility		• Biogas storage tank/digested sludge holding tank	
Anaerobic digested		Digested sludge dehydrator (centrifugal dehydrator)	
water treatment	250m3/day	Wastewater treatment facility (SBR: sequencing batch reactors	
facility		Connected treatment water tank	
	30 tons/day	Digested sludge/subsidiary materials storage tank	
Bio compost production facility		Post-composting facility (shaft-free mixing)	
r · · · · · · · · · · · · · · · · · · ·		• Equipment to select foreign substances and packing facility	
Bio methane	600Nm3/hr (biogas)	Biogas refining facility(water scrubbing)	
production facility		Biomethane compression, storage, and measurement facilities	
Odor reduction	1,200m3/min	• Ventilator	
facility	(deodorization capacity)	• Odor reduction facility (chemical cleaning+bio filter+wet cleaning)	
port for the establishmer	nt of waste-to-fue	technology in the Transport sector in Bangladesh	

Support for the establishment of waste-to-fuel technology in the Transport sector in Bangladesh

2.8 Benefits analysis

Direct (quantitative) benefits	Indirect (qualitative) benefits
	• Reduced maritime pollution from the inland treatment
	of organic waste
• Benefits from the on-site use of biogas	• Securing integrated management and stable treatment
• Benefits from the replacement of LNG with biomethane	facilities of organic waste, resulting in the improvement
CDM project effect benefits	of living conditions and the efficiency in Wonju's
• Benefits from the sales of bio compost	public administrative management.
• Saving transport costs and environmental benefits from	Encouraging waste reduction
the inland treatment of waste originally subject to ocean	• Establishment of resource-recycling society
dumping	• Promotion of Wonju, Gangwon Province as a local
	government that leads low-carbon green growth and
	climate change adaptation.

Source: Ecoenergy Holdings Co., LTD. (2010). Using Organic Waste to Bio Methane Vehicle Fuel Facility Project Technical Report. Ecoenergy Holdings Co., LTD, p15.

THANK YOU!