

ADB-KSP Join Consulting

Support for the establishment of waste-to-fuel technology in the transport sector in Bangladesh

Dr. Jinyoung Park
Director
Global Transport Academy
Korea Transport Institute

This is not an ADB material. The views expressed in this document are the views of the author/s and/or their organizations and do not necessarily reflect the views or policies of the Asian Development Bank, or its Board of Governors, or the governments they represent. ADB does not guarantee the accuracy and/or completeness of the material's contents, and accepts no responsibility for any direct or indirect consequence of their use or reliance, whether wholly or partially. Please feel free to contact the authors directly should you have queries.

CONTENTS

- I. Introduction of Project
- II. Status in Bangladesh
- III. Implementation in Bangladesh (Dhaka BRT)
- IV. Issues

I

Introduction of Project

1. Project Overview

Name	Support for the establishment of waste-to-fuel technology in the transport sector in Bangladesh
Implemented by	The government of Republic of Korea and The Export–Import Bank of Korea
Features	A joint consulting project with Asian Development Bank (ADB) as a part of the Knowledge Sharing Program (KSP)

Case study in Korea

- Production of the Tool Kits to Introduce the Waste-to-Fuel System
- Invitation Training

short term

Establishment of the Implementation Plan of Waste-to-Fuel system

long term

Dhaka Public Transport System -economical/social/ecological sustainability system

2. Project Contents and Expected Benefit

2.1 Project Content

- Analysis of the public transport system of Dhaka
- The case study of the waste-to-fuel system in Wonju city and finding implications
- The production of the introduction tool kits for the construction of a waste-to-fuel system
- Workshops for performance improvement
- Establishment of the implementation plan of a waste-to-fuel project

2.2 Expected Benefit

For Bangladesh and Dhaka

- To establish a sustainable transport system and improve urban environment
- To secure knowledge and technologies related to waste-to-fuel project

For ADB

- To enhance the effectiveness of projects supported
- To ensure continuous cooperation with Korea Eximbank and other relevant organizations in Korea

3. Survey and Analysis

3.1 Analysis of the Public Transport System

■ Analysis of the public transport system in Dhaka

- Types of public transport and use of each public transport
- The operating state of roads and transport system
- Securing documents and written materials
- Analysis of the current state and major issues

■ National policies, operating plans and budget of BRT

- Interviews with officials of the public transport related government bodies
- A cooperation system with relevant government bodies

■ Analysis of the previous improvement plan of the public transport system in Bangladesh

- Relevant document review
- Analysis of existing improvement plans
- Possible links to the waste-to-fuel system
- Investigation of the possible EDCF projects

3. Survey and Analysis

3.2 Analysis of the Waste to Fuel System in Korea

- Introduce Waste to Fuel system in Korea
- Case Study of The Waste-to-fuel system in Wonju
- Focus on: Basic information, Project costs including fixed and operating expenses, Financial structure analysis, Operating method and status, Success factors of the establishment and operation of the system, Development and improvement directions
- The system diagram, photos and video materials of the system are produced to ensure more effective understanding.

3. Survey and Analysis

3.3 Implementation Plan

Current status of the public transport

- Types of public transport and use rate of each type
 - Identifying the features of the public transport & the travel characteristics of passengers
- The operating status of roads and traffic system
- Energy use by the public transport
- Securing documents and records for analysis
- Analysis of operation status and key issues

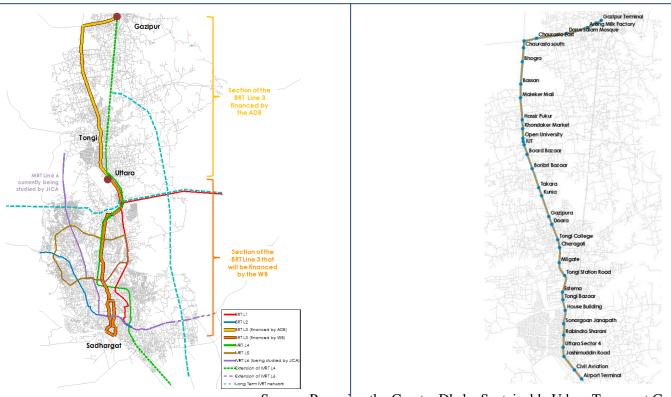
1.1 Public transport modes in Dhaka

• The main public transport modes in Dhaka include (automatic / cycle) rickshaws, tempos(three-wheelers), truck buses, trains and taxes. "Dhaka Metropolitan Regional Transport Committee (DMRTC)" is responsible for the management of the public transport. The following table presents the operating status and fares of public transport modes in Dhaka

Bus (Large, Mini and Micro) Auto-rickshaw Cycle-rickshaw Large Bus(Automatic): 1.45Tk/km Basic fare: 18Tk 14Tk for the initial 2km and 6Tk per Km 10Tk per km 1Tk per minute while waiting

Note: 1Tk = 13.11 KRW(As of June, 2014)

1.2 Buses in Dhaka

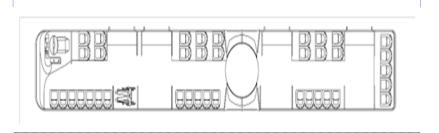

- Buses, which are currently in operation as one of the main public transport modes in Dhaka, are separated as three categories: Large buses for 30~32 passengers, Mini buses for 15~30 passengers and Micro buses for 8~15 passengers
- Since most buses currently in operation in Dhaka use CNG as fuel, it would be possible to secure the business conditions for recycling wastes as fuel

Classification	Number of Route	Number of Bus
Large Bus	103	1,617
Mini Bus	103	2,973
micro Bus	38	937

Source: Bangladesh Road Transport Authority, 2007

1.4 BRT construction plan

- The government of Bangladesh is working on several projects including BRT, mass rapid transit (MRT) and sky highway to resolve the public transport issues
- Currently, the introduction of BRT, which was established by Asian Development Bank (ADB) and
- World Bank (WB), is in progress in Dhaka. This transport system is closely related to this project


Source: Preparing the Greater Dhaka Sustainable Urban Transport Corridor, 2011, ADB

1.5 BRT operation plan

Exterior and Interior Specifications

- Bus can have both single-deck or articulated
- Articulated bus can accommodate up to 140 passengers with 4 doors and 38 mixed seats

	Exterior Sp	pecification
	Length	18.5m
Exterior of BRT Bus	Width	2.6m
Exterior of BK1 Bus	Height	$3.6 \sim 4.1$ m(from the paved road surface0
	Turning Radius	15.0m

Source: BRT and Corridor Restructuring Implementation Study and Preliminary Design work for the Uttara -

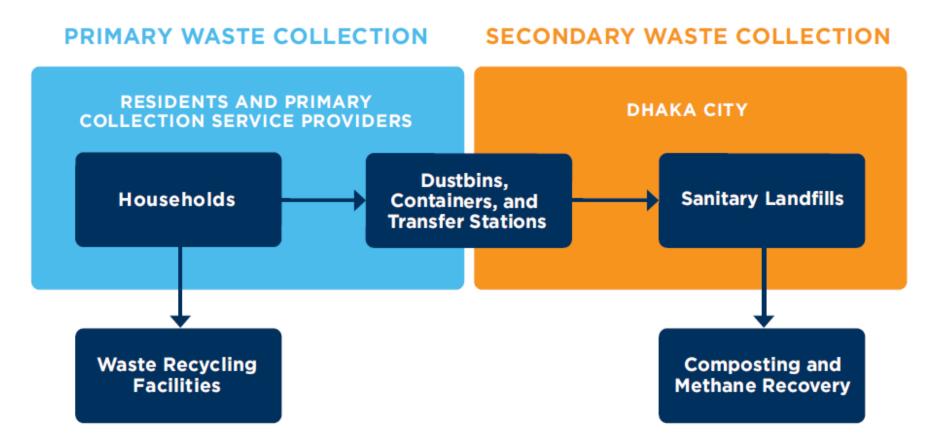
Mohakhali - Ramna - Sadar Ghat Corridor in Dhaka

Source: Transmilenio / Transjakarta

1.5 BRT operation plan

■ BRT vehicle purchase plan by year and projected cost

• By 2043, 173 BRT bus will be in operation and the following table describes further details of the BRT vehicle plan


Classification	2019	2024	2029	2034	2039	2043
number of vehicles to purchase	47	91	69	97	76	-
retire	-	-	47	91	69	-
operate	47	138	160	166	173	173
purchase costs (USD)	7,232,548	14,003,444	10,617,996	14,926,748	11,695,184	-

Source: Preparing The Greater Dhaka Sustainable Urban Transport Corridor Final Report. 2011

2.1 Dhaka Waste Collection and Disposal

- Waste expected in Bangladesh(2015): 5,000 ton/day
- Waste output in Bangladesh(2004): 3,400 ton/day
- Bangladesh is one of the world's poorest and most populous nations. Its 150 million
 people live in an area the size of Iowa and have an average per capita income of about
 \$600 per year, according to the Bangladesh Bureau of Statistics. Because it lacks space
 for landfills, trash disposal is a major concern.
- 80 percent of the waste is organic food waste, such as vegetable and fruit peels, meat scraps, and spoiled fish.

2.1 Dhaka Waste Collection and Disposal

Source: Adapted from Dhaka City Corporation and Japan International Cooperation Agency.

Overall conditions in expected waste-to-fuel system facility site

- monitoring in Amin Bazar that currently used as landfill site in Dhaka
- wastes are discharged from anywhere in unsanitary conditions
- no social responsibilities for discharging and collecting wastes
- difficulties in collection and transport of the wastes, due to no regulations for waste capacity limit of collection and landfill
- current landfills are operating without any environmental pollution prevention facilities
- potential natural and artificial danger for accidents
- tamping and soil coverage are crucial to enable recycling in the existing landfill sites
- considering the economic feasibility, governmental support to waste collection and transportation are expected to be essential

1. Review of BRT fuel consumption

Capacity of BRT bus

- Seating capacity for Zhongtong, Optare, and Xiamen was 78, 56, and 25-27
- Vehicles were 18.0m in total length and ran on two types of fuel (CNG and diesel)
- Diesel is superior to CNG in terms of transport, storage, distribution, production, and sustainability

Classification	Capacity	ty ous) No. of seat	Length (m)	Fuel	mileage	
	(person/bus)				m³ orL/100km	km/m³ orL
Zhongtong	180~224	78	18	CNG	38	2.63
Optare	-	56	18	CNG	40	2.50
Xiamen	164	25~27	18	Diesel	35	2.86

Source: Preparing The Greater Dhaka Sustainable Urban Transport Corridor Final Report. 2011

1. Review of BRT fuel consumption

- Vehicle specifications for operation in Dhaka
- To calculate the amount of alternative fuel, vehicle specifications and mileage by applicable brand were considered
- Applicable mileage was estimated at 33 m³/100km(3.0km/m³)

C1 10 11	Capacity	No. of	Length (m)	Fuel	mileage	
Classification	(person/bus)	seat			m³ orL/100km	km/m³ orL
Vehicle Specifications		78	18	CNG	33	3.0

1. Review of BRT fuel consumption

- Estimation of fuel consumption by year
- Estimated in consideration of the expansion of BRT routes, applicable mileage, and the number of trips
- Fuel consumption estimation for 173 vehicles in 2043 showed that when each bus makes 3.1 trips
- Distance travelled would be 7,797,276km/yr and the fuel consumed would be 2,599,092 m³/yr

year	Number of bus	number of trips	Distance(km/year)	fuel consumption (m³/year)
2019	47	4.6	3,118,911	1,039,637
2024	138	2.0	3,898,638	1,299,546
2029	160	1.9	4,455,711	1,485,237
2034	166	2.2	5,198,184	1,732,728
2039	173	2.5	6,237,821	2,079,274
2043	173	3.1	7,797,276	2,599,092

2. Comparison of waste-to-fuel technology

Criteria	Organic Waste Anaerobic Digestion	Integrated Waste Landfill
	- sort out the organic wastes - construct the anaerobic digestion facility - biogas to fuel through the anaerobic digestion method	- waste landfill - biogas to fuel through the anaerobic digestion after the landfill method
Pros	- short term degrade of organic waste - suitable as resource due to the high portion and amount of organic waste	- enough amount of waste - non-essential of waste sorting process
Cons	- need of organic waste sorting process - competition with the composting system company	- no sanitary landfill site - high costs of sanitary landfill facility construction and transformation
Decision	- from the field investigation, anaerobic digestion system is suitable for Dhaka	

3. Gas potential overview

Substrate	Unit	Food waste	TOTAL Substrate Mix
Volume	t/d	140	140
volume	t/y	51,100	51100
Biogas potential MIN	m3/ton VS	308	
Biogas potential MAX	m3/ton VS	667	
Methane content	% CH4	60%	
Biogas potential MIN	m3/ton VS	185	
Biogas potential MAX	m3/ton VS	400	
Biogas potential SET	m3/ton VS	290	
Biogas potential MIN	m3/ton	42	
Biogas potential MAX	m3/ton	90	
Biogas production MIN	Nm3/y	2,121,289	
Biogas production MAX	Nm3/y	4,599,000	
Biogas production SET	Nm3/min	6.4	6.4
Biogas production SET	Nm3/y	3,360,144	3,360,144
Vehicle fuel SET	Nm3/y	2,062,438	

4. Comparison the waste amount between Dhaka and Gazipur city

Criteria	Dhaka	Gazipur City	No	te
① Waste generation amount	5,000 ton/day	350 ton/day		
② Waste collection rate	60%	60%		
③ Total landfill amount (①x②)	3,000 ton/day	210 ton/day		
			criteria	ratio
Food waste (③xRatio)	2,010 ton/day	160 ton/day	Dhaka	67%
			Gazipur	76%

Source: CCAP (Center for Clean Air Policy). (2012) Dhaka's Integrated Municipal Solid Waste Program. CCAP, p.2

5. Feasibility analysis

	Criteria	Wonju, Korea	Bangladesh	Note
Material		220ton/day investment [material-soil residue(include the liquid), food waste, wastewater, organic sludge]	140ton/day investment [material- food waste]	
Facility	y installation fee	Approx. 259	Approx. 180	
	Biomethane output	2365200	Approx. 200 thousand	
	On-site consumption	865200	Approx. 50 thousand	
	Biomethane sales	150 thousand	Approx. 150 thousand	
Total gross	Unit cost of sales	Approx. 650 won Approx. 400 won		
	Sales cost	Approx. 10	Approx. 6	
	Waste carry-in commission	Approx. 40 (Approx. 50,000won/ton)	unsettled	*Unit: hundred million KRW
	Labor cost	5. 5	2.0	(except output, consumption,
	Maintenance and inspection	5.0	3.5	sales, and unit
	Chemical treatment fee	5.0	3.5	*Per year
Maintenance expenses	Utility bill	8.0	4.0	
	Waste transit and treat fee	6.5	3.0	•
	Waste collecting fee	none	unsettled	
	total	Approx. 30	Approx. 16	

Issues

1. Project Issues

Waste collection system

>> How we create proper waste collection system in developing countries? (any good cases?)

Financial feasibility of the project

- Cost for construction and operation
- Wonju project was conducted by PPP (20 years of operation by private partner), because the project is feasible with waste treatment fee from government.

2. Technological Issues

- Quality of gas
- Maintenance
- Way to consider social impact of project (new jobs, environment, health, etc)
- Building consensus for waste management
- Fuel security
- Any global funding?

THANK YOU!

jypark@koti.re.kr