

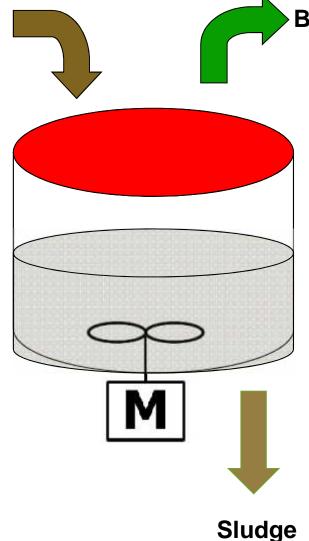
Introduction to Waste to Fuel Technologies - Biogas to Bio CNG

Steve Peters 2015

This is not an ADB material. The views expressed in this document are the views of the author/s and/or their organizations and do not necessarily reflect the views or policies of the Asian Development Bank, or its Board of Governors, or the governments they represent. ADB does not guarantee the accuracy and/or completeness of the material's contents, and accepts no responsibility for any direct or indirect consequence of their use or reliance, whether wholly or partially. Please feel free to contact the authors directly should you have queries.

Methane Sources

Methane Key Points


Methane – Biogas

Input Sources

A watery slurry of about 10% solids from various sources:

- Food waste
- Cassava Starch Effluent,
- Brewery Effluent
- Palm Oil Mill Effluent,
- Ethanol Factory Effluent,
- Sewerage Plant Sludges

Biogas

Mix of methane, CO2, H2S & trace gases.

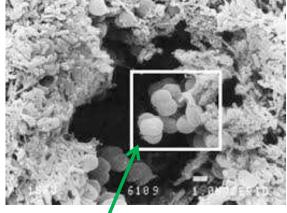
Typically ~55-65% Methane

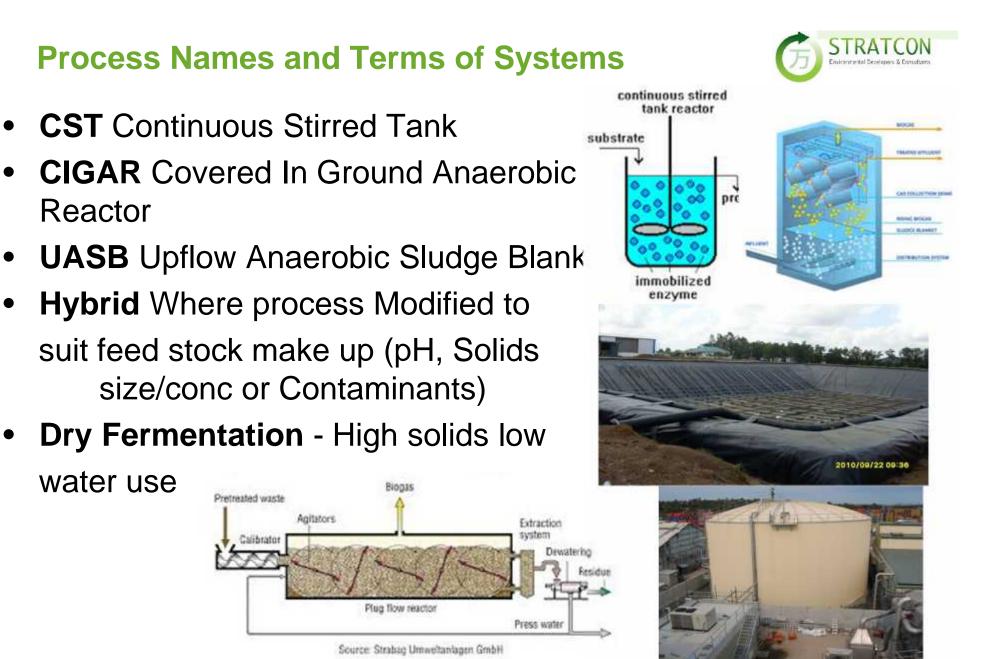
Sewer Gas ~ 45% Methane

Landfill Gas ~20-50% Methane

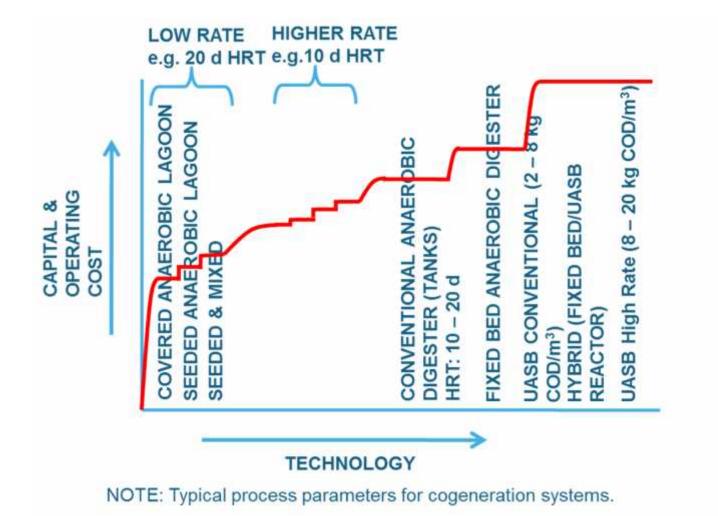
Hydrogen Sulphide varies from 1-3% (must be removed).

The Science of Biogas

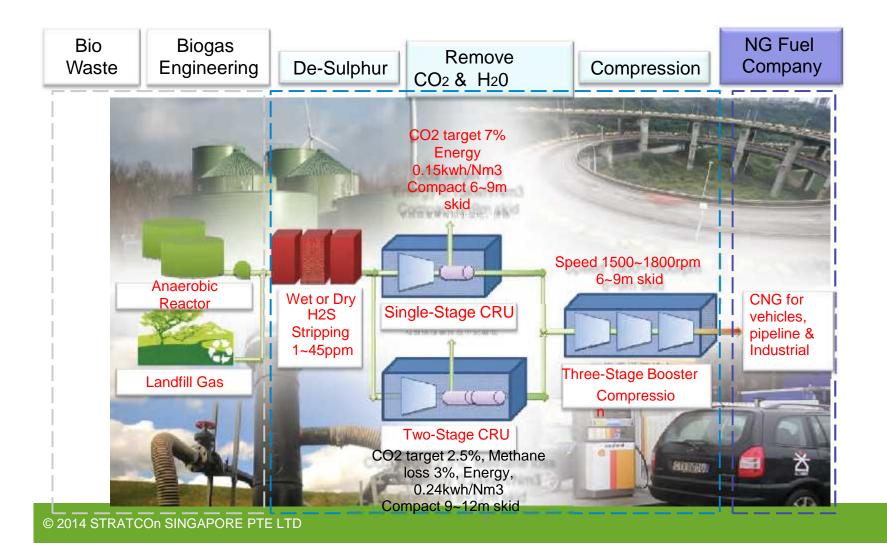


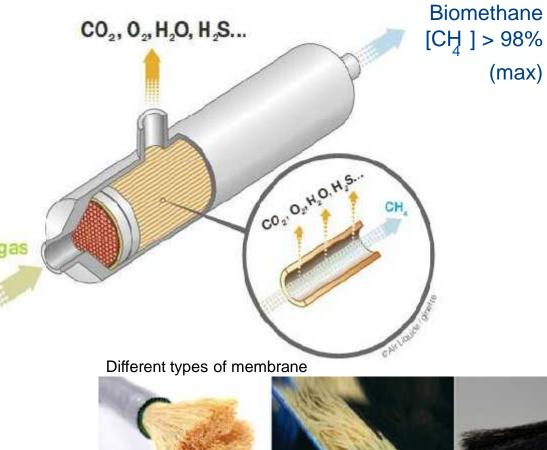

Types of Bacteria and Reactions

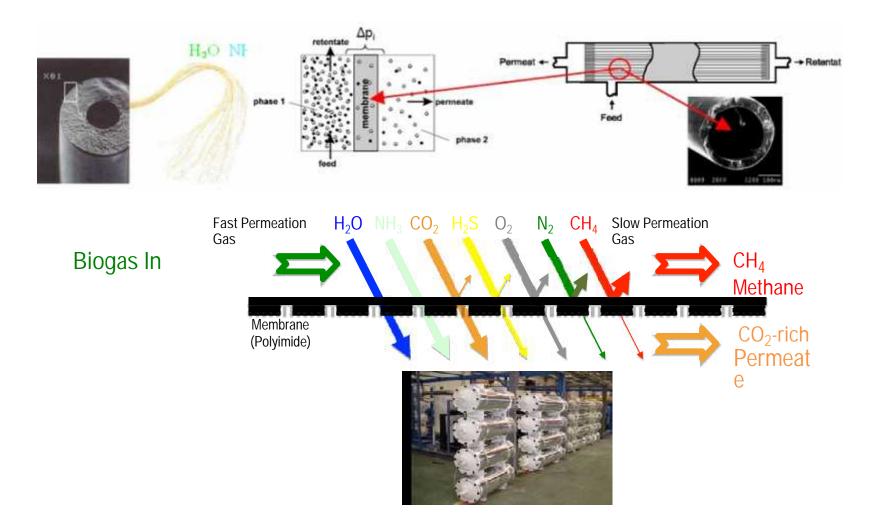
- Hydrophilic performance related to Volume, works well in tropical climates with constant ambient temperatures.
- Mesophilic takes place between 35°C and 50°C. Depending on location heating will be required.
- Thermophilic takes place above 50°C. Requires heating for tanks and insulation to ensure constant temperature.
- Exotics saline tolerant and temperature tolerant methanogens. These have not been widely used.



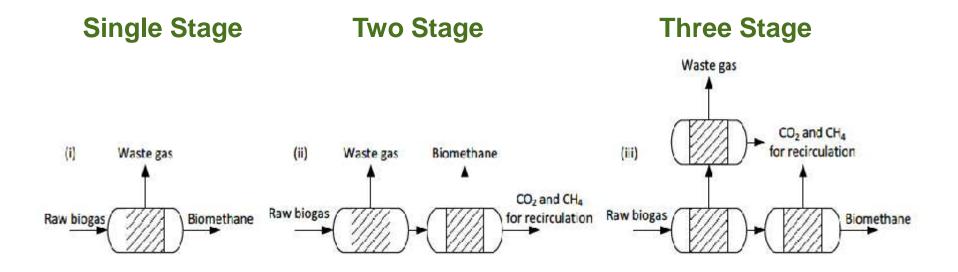
Methanogens in action


Types of Systems


The Process from Waste to Bio CNG (Membrane)

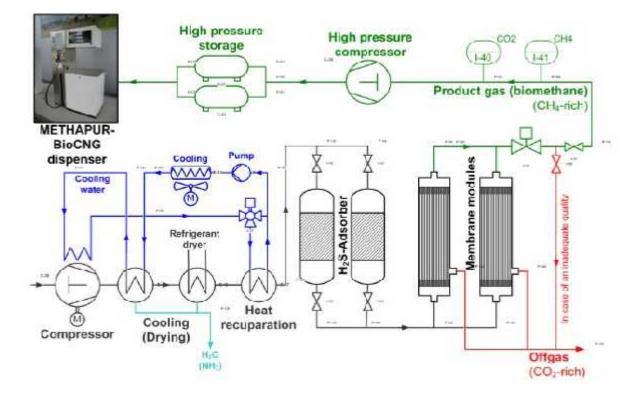

Hollow Fiber Membrane Technology for CO₂ / CH₄ Separation

The membrane separates gases by the principle of selective permeation across the membrane wall. Relatively fast permeable gases such as CO₂ and H₂O to pass through the membrane wall quickly are diverted. Biogas The slow permeable gasses such as CH_4 and N₂ flows straight through are part of the product gas. The medium is permeable gasses such as O_2 and H_2S will be partially separated.

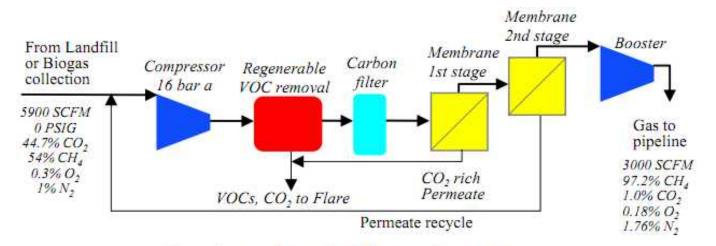


Hollow Fiber Membrane Technology for CO₂ / CH₄ Separation

Types of Hollow Fiber Membrane Technology



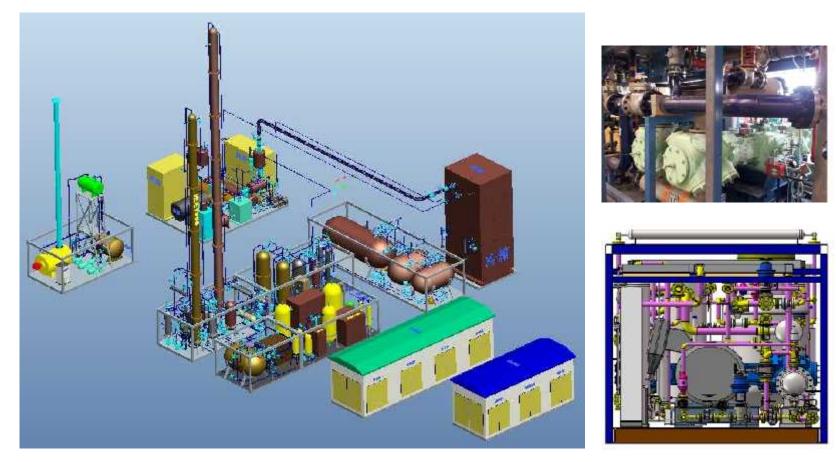
Gas Quality in percentage of methane (CH4)


Simplified P&ID for Bio-CNG as NGV fuel

This is a flow design of the single stage membrane in parallel. The advantage of single stage membrane design is that due to less number of membrane used, the equipment capital cost is much less than the 2 stage design. The disadvantage is that the CH₄ recovery rate is lower.

Concept of Biogas Upgrading & Performance of Membrane

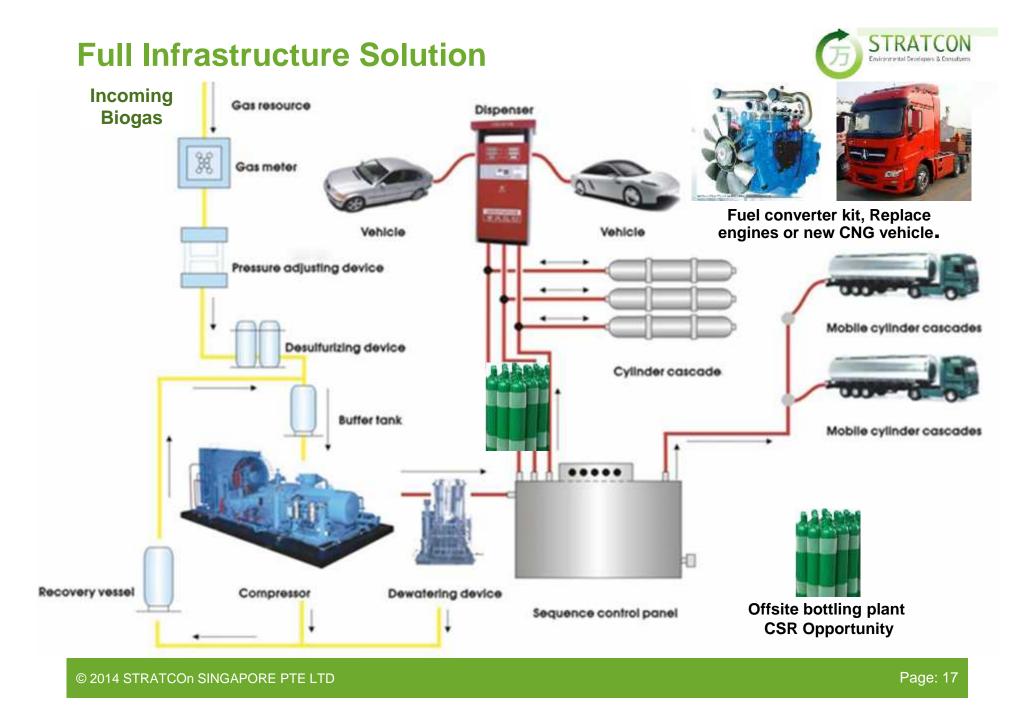
Flow schematic: biogas/landfill gas purification unit


Gas Type	Particulars	Rating
	Recovery rate	>95%
CH ₄	Product gas purity	90% ~ 99%
CO ₂	Removal target	0.5% ~ 3%
H_2S	% Product = % Feed	x 0.3
O ₂	% Product = % Feed	x 0.6
N ₂	% Product = % Feed	x 1.2

This is the 2 stage membrane design for high methane recovery rate. Note that the feedback flow design is important to ensure the high recovery rate.

Important take home message – 2 stage!

Configuration Example


Skid mounted MRC compression unit to CASIC for 30,000 m3/D natural gas liquefaction project for CNOOC. It is the smallest MRC compressor package for such application and the whole system is made to be portable with high compression efficiency and low refrigerant loss.

Example of Ingenco, Cedar Hills LF, Seattle, WA, USA

Startup on: Feb, 2009 Raw gas feed: 16 MMSCFD (18,800 Nm3/h)

CNG Filing Infrastructure, Trucking & Bottling

SEL.

Mobile daughter station can transport CNG Anywhere Making a "Virtual Pipeline"

第2月10日月月1

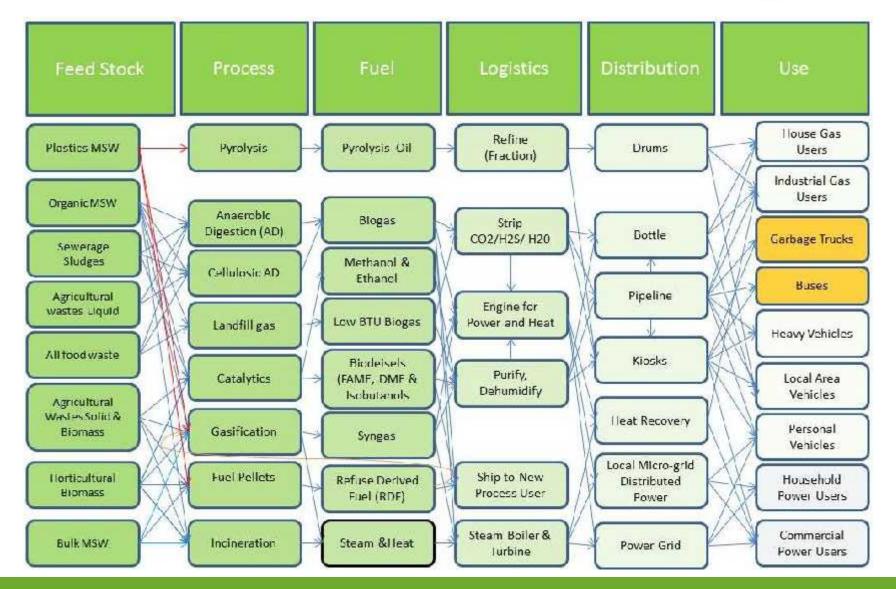
From Biogas pond/tank to vehicle solutions to replace diesel with CNG to repowered fleet vehicles – reliable, plentiful, ecofriendly and where you want it.

Different Processes to Purify Biogas

TECHNOLOGY	Pressure Swing Adsorption	Pressure washing technology	Amine Washing Separation	Chemical Absorption Separation	Selective Solvent Separation Technology	Membrane Adsorbtion
ABBREVIATION	PSA	DWW	MEA/DEA	LP Cooab	Genosorb	Hollow Fiber Membrane
Working Principle	High-pressure activated carbon adsorption of CO2	High-pressure water-soluble CO2	Atmospheric pressure amine absorption	Cooab chemicals absorption CO2 under certain temperature and pressure conditions	The Organic Chemical solvent absorpt H2O, H2S and OO2 under certain temperature and pressure conditions	Through different gas activity with different rate of penetration in the membrune and separation of fast gas CO2 and slow gas of CH4, while removing a cortain amount of N2, O2 and H25
Working Process	Physical	Physical	Chemical	Chemical	Chemical	Privacul
Working Pressure	6-8 bar	8-12 bar	0-1 bar	6-8 bar	6-8 bar	12 bar - 15 bar
System Pressure Luca		5-10 KD C - C	10000	5-020-0-0	0 885.00 6	2-3 tar
Outlet Pressure						>10 bar Bagorianti
Working Medium	Activated Carbon	Water	Antine	Coodb Chemicals	Genesorts organic chamical solvent	Fiber membrane polymor materials
Requires Working Heat	No	No	Large Quaritity Neeeded (160 C)	Large Quantity Needed	Yes (55-89°C)	No, but can improve the efficiency at high anticent temperature
Purification Chemicals Required	Να	No	Ves	Yes	Yes	No
Water Requirement	No	Large Amount	Large Amount	No	No	740
Requires De-Water Drying before Purification	Yes	No	No	No	No	No, but it rewatered prolonge membrane its
Requires Sulfur Removal before Purification	Yas	No	Yes	Yes	No	No
Maximum sulfur context allowed in gas before Purification	5 mg/Nm3 Rohgas	500 ppmv	5 mg/Nm3 Rohgas	Little	100 PPMV	Unrestricted, Maximum can also be used for the desulfurization process of 10 - 30mole%
Dewater drying after Purification required	No	Yes	Yes	Yes	No	No
Pressurization to CNG required after Purification	No	NO.	Yes	Yes	No	No
The methane content of the purified gas	96%	97%	90%	99%	93%	90 - 99% Adjustithe
The purified gas flow regulating range	85-100%	50-100%	50-100%	50-100%	50-100%	10 - 100%
Methane escape rate	3-8%	0.05-8%	<0.1%	<0.1%	9-18%(2-4%)	1 + 0%
exhaust gas processing system	Required	Required	Not Required	Not Required	Required	Not Required
Technical system Complexity	Complicated	Complicated	Relatively Simple	Relatively Skripte	Complicated	Singlest
Power Consumption	0.24-0.29	0.22-0.4	0.06-0.14	0.15	0.511	0.15 - 0.25 Congrussion of electrical energy consumption, the film group no power consumption.
Heat Consumption		0.1	6,3-0.7	0.58	0.07	0
Energy Consumption	Low	Low	LOW	Low	High	Wary Lisw
The characteristics of the equipment package	Container type, easy to transport, install and commission	Container type, easy to transport, install and commission	Container type, easy to transport, install and commission	Set block-style modular	Container type, easy to transport, install and commission	Container type, easy to transport, Install and commission
Bioges purification engineering scale	Large Scale	Large Scale	Medium Scale	Small Scale	Large Scale	Large, Medium and Small Scale
One-time investment of equipment	Нф	Medium	Relatively Low	Relatively Low	High	Medium to High, varies according to manufacturer
System operating costs	High	Medium	Refatively Low	Relatively Low	High	Very Low
System reliability	Hgh	High	Needs to be improved	Needs to be improved	High	Vary High
Equipment maintenance costs	High	Medium	Relatively Low	Relatively Low	Hgti	Only the compressor requires membranes, the membrane assembly is a fixed, no maintenance required
Practical engineering experience	Many	Many	Few	Few	Faw	Many in USA. Few in Europe. Inerause infr are in USA

Existing Examples of WTF Projects

Location (City, Country)	Capacity (Nm³/h)	Working Since	Feedstock	Use of upgraded biogas
Kobe, Japan	2 x 330 = 660	2006	WWTP	CNG Vehicles (Cars & Buses)
Lille, France	2 x 600 = 1.200	2006	Municipal Solid Waste	CNG Vehicles (Buses)
Kobe, Japan	150	2004	WWTP	CNG Vehicles (Cars)
Trollhättan 2, Sweden	400	2000	WWTP	CNG Vehicles (Cars)
Sorpa, Iceland	90	1999	WWTP	CNG Vehicles (Cars)
Kalmar, Sweden	90	1998	WWTP	CNG Vehicles (Cars)
Uppsala, Sweden	90	1998	wwtp	CNG Vehicles (Cars & Buses)
Linköping, Sweden	2 x 330 = 660	1997	Organic Waste	CNG Vehicles (Cars & Buses)
Bromma, Sweden	90	1997	WWTP	CNG Vehicles (Cars & Buses)
Trollhättan, Sweden	140	1995	WWTP	CNG Vehicles (Cars & Buses)
Sonzay, France	100	1994	WWTP	CNG Vehicles (Cars)
Lille (Marquette), France	100	1993	WWTP	CNG Vehicles (Cars)



More Existing Examples of WTF Projects

Location (City, Country)	Capacity (Nm³/h)	Working Since	Feedstock	Use of upgraded biogas
Skarpnäck, Sweden	2 x Totara 4.000	Commissioning 2011	Organic Waste	CNG Vehicles (Cars)
Katrineholm, Sweden	Rimu 800	Commissioning 2010	Organic Waste	CNG Vehicles (Cars)
KTG, Germany	Totara 2.000	Commissioning 2010	Crops / Waste	Pipeline injection
Catalyst, Canada	Rimu 800	Commissioning 2010	Organic Waste	Pipeline injection
Stresow, Germany	Matai 1.200	Commissioning 2010	Crops	Pipeline injection
Lidköping, Sweden	Totara 2.000	Commissioning 2010	Organic Waste	CNG Vehicles (Cars)
Zwickau, Germany	Rimu 800	Commissioning 2010	Crops	Pipeline injection
Västevik, Sweden	Manucka+ 130	Commissioning 2010	WWTP	CNG Vehicles (Cars)
Örebro, Sweden	Totara 2.000	2009	Organic Waste	CNG Vehicles (Cars)
Lille (Marquette), France	Manuka 80	2009	WWTP	CNG Vehicles (Cars)
Motala, Sweden	Manuka 80	2009	WWTP	CNG Vehicles (Cars & Buses)
Katrineholm, Sweden	Manuka 80	2009	WWTP	CNG Vehicles (Cars)
Seoul, Korea	150	2009	WWTP	CNG Vehicles (Cars)
Guströw, Germany	5 x 2.000 = 10.000	2009	Crops	Pipeline injection
Madrid, Spain	2 x 2.000 = 4.000	2009	Municipal Solid Waste	Pipeline injection, CNG Vehicles (Buses) & Power Gen

Waste Supply Chain and Linkages for Waste

