This is not an ADB material. The views expressed in this document are the views of the author/s and/or their organizations and do not necessarily reflect the views or policies of the Asian Development Bank, or its Board of Governors, or the governments they represent. ADB does not guarantee the accuracy and/or completeness of the material's contents, and accepts no responsibility for any direct or indirect consequence of their use or reliance, whether wholly or partially. Please feel free to contact the authors directly should you have queries.

Technology Options for Wastewater Treatment

April 24, 2012

Outline

- Basic Sewage Treatment Processes
- Existing Maynilad Sewage Management
 Facilities and Technologies Used
- Sewage Treatment Processes
- Selection Criteria
- Technology Options

Basic Sewage Treatment Process

Preliminary (Physical)	Primary (Physical)	Secondary (Biological)	Sludge Management/ Disposal
 Screening Grit Removal Oil and Grease 	 Flow Equalization Aeration Sedimentation 	 Suspended Growth Process Attached Growth Process Integrated Fixed-film Activated Sludge Process 	 Sludge Stabilization Digestion Sludge Dewatering Decanter Filter Press Screw Press Sun drying Thermal drying Sludge Disposal biosolids , vermiculture, waste to energy
		 Tertiary Treatment Disinfection Nitrification and Phosphorus Removal Micro/ultra/nano filtration Reverse osmosis 	

Existing Wastewater Facilities

5 Sewerage Systems in Maynilad

- 1. Central Manila Sewerage System (CMSS)
 - (ISO 9001&14001; OSHAS 18001)
- 2. Dagat-dagatan Sewerage System (DDSSTP) - (ISO 9001 &14001; OSHAS 18001)
- 3. Sewerage System with communal septic tanks
- 4. Makati Isolated System
- 5. Ayala Alabang System(AASTP)
- Total capacity of 469,000 cmd
- More than 480 km of sewer lines
- ~120,000 households served

Technologies Currently Used

Physco/Chem Screening/Grit Removal/Aeration

preliminary treatment (physical)/bio chemical
treatment Process in CMSS and communal septic tank

Lagoon (Oxidation Pond)

- a man-made pond used to treat organic wastes through the symbiotic actions of algae and microorganisms (by natural and mechanical aeration) aerobic/facultative and polishing ponds
- treatment process in DDSSTP

Activated Sludge - Extended Aeration

 a type of activated sludge process with no primary settling and long aerobic detention time to generate less excess sludge overall
 treatment process in AASTP

Technology Selection Criteria

- Technical
 - Process robustness
 - Process efficiency
 - Compact footprint
 - Ease of operation and maintenance
- Environmental/Health
 - Sludge management
 - Odor treatment requirement
 - Noise
- Statutory Requirements
- Economics
 - Cost efficiency

Technology Options

- Sequencing Batch Reactor (SBR)
- Moving Bed Biofilm Reactor (MBBR)
- STM Aerotor
- Activated Sludge Process (ASP)

Conventional Activated Sludge (CAS)

CAS is the most common suspended growth process used for municipal wastewater treatment. It consists essentially of an aerated biological reactor followed by a secondary clarifier.

- Good process flexibility
- Reliable operation
- Proven track record in all plant sizes
- Low odor emission
- Energy production
- Ability to withstand nominal changes in water characteristics

Maynilad's CAS Treatment Plant

Sequencing Batch Reactor (SBR)

SBR is a fill-and draw activated sludge system designed to operate under non-steady state conditions

- Smaller footprint because of absence of primary, secondary clarifiers and digester
- Biological nutrient (N&P) removal
- High degree of coliform removal
- Less chlorine dosing required for post disinfection
- Ability to withstand hydraulic and organic shock loads

Maynilad's SBR Treatment Plants

Congressional STP (567 cmd)

> Grant STP (4,800 cmd)

Legal STP (4,800 cmd)

Maynilad

Maynilad's SBR Treatment Plants

Moving Bed Biofilm Reactor (MBBR)

MBBR is an integrated fixed film activated sludge (IFAS) process and essentially a hybrid between a suspended growth (ASP) and a fixed film system

- Flexible design that allows for increased capacity
- Stable under large load variations
- Smaller foot print
- Single pass treatment
- Extremely compact and simple biological treatment system

Maynilad's MBBR Treatment Plants

STM AEROTOR

STM Aerotor is activated sludge and fixed film technology as part of a process that provides biological nutrient removal for municipal wastewater treatment

- Low energy requirement
- Small footprint
- Improved sludge settling and quality
- Low capital
- Advance biological nutrient removal
- Stable process
- No odors
- Can handle various load fluctuations

Maynilad's STM Aerotor Treatment Plants

Energy consumption of different technologies

kWh per cu.m Wastewater (Aeration Only)

Annual Energy Costs for 10,000 m³ Facility*

*Based on PHP 12.00 per kWh

Thank You

frankie.arellano@mayniladwater.com.ph www.mayniladwater.com.ph

Thank you.