
This is not an ADB material. The views expressed in this document are the views of the author/s and/or their organizations and do not necessarily reflect the views or policies of the Asian Development Bank, or its Board of Governors, or the governments they represent. ADB does not guarantee the accuracy and/or completeness of the material's contents, and accepts no responsibility for any direct or indirect consequence of their use or reliance, whether wholly or partially. Please feel free to contact the authors directly should you have queries.

CWFPF ROUNDTABLE MEETING

Forever no More: Advanced Electrochemistry for PFAs Destruction

Goh Yeow Hwee

Sales Manager, Hydroleap Pte Ltd

Company Introduction

Hydroleap, founded in 2016 in Singapore by Mohammad Sherafatmand, specializes in chemical-free electrochemical technologies for industries such as data centers, food production, and pharmaceuticals. Its solutions are designed to lower operational costs, enhance sustainability, and improve water efficiency

R&D Centre

Office & Factory

Office & R&D Centre

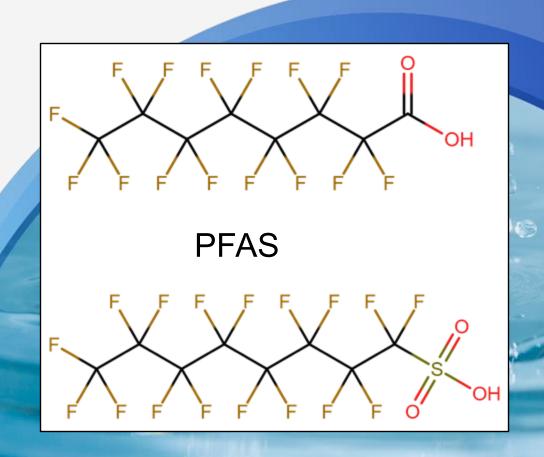
(Singapore HQ)

(Singapore HQ)

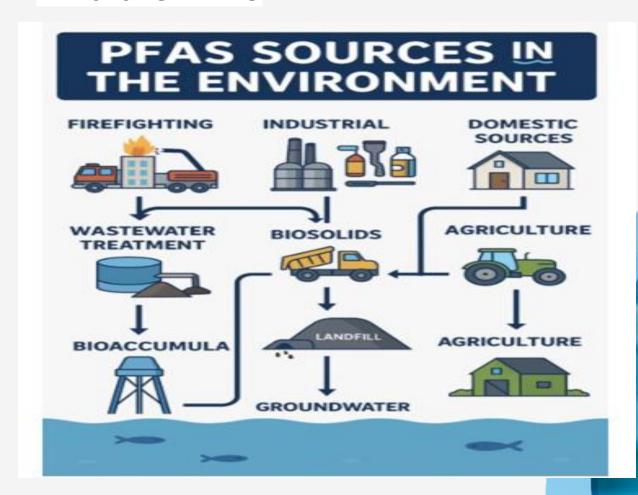
(Australia)

Company Feature

Hydroleap Named an Awardee of the NextGen Tech 30 List 2025 for Innovation in Sustainable Water Treatment in September 2025 by Granite Asia.


INTERNAL. This information is accessible to ADB Management and Staff. It may be shared outside ADB with appropriate permission.

What is PFAS


PFAS or Per- and Polyfluoroalkyl Substances

- synthetic chemical
- term "Forever chemicals"
- Found in many products
- PFOS (perfluorooctane sulfonic acid) and PFOA (perfluorooctanoic acid) are both subsets of PFAS.
- Most studied and widely used PFAS compounds, historically found in:
 - PFOS: stain repellents, firefighting foams
 - PFOA: non-stick cookware, waterproof fabrics
- Challenge to break down PFAS

Where is PFAS

MICROWAVE POPCORN BAGS

WATER RESISTANT CLOTHING

PAINT

STAIN RESISTANT PRODUCT

PERSONAL CARE PRODUCTS

PFAS

COSMETICS

NON-STICK COOKWARE

FACT FOOD PACKAGING

STAIN RESISTANT FURNITURE

PHOTOGRAPHY

PESTICIDES

PFAS Impact On Human Health, Environment & Industrial Manufacturing Understanding the Impacts

Human Health Impact

- Liver toxicity & cancer: Alters gene expression Immune suppression:
 Weakens vaccine response
- Reproductive harm: Low birth weight, hypertension
- Hormonal disruption: Affects thyroid, testosterone, cholesterol

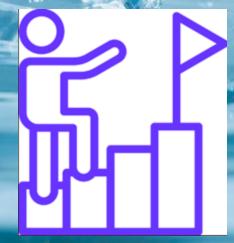
Environmental Impact

- Persistence: "Forever chemicals" resist breakdown
 Bioaccumulation: Build-up in wildlife and food chains
- Water contamination: Pollutes drinking sources, aquatic life
- Soil/Air pollution: Emitted during production, long-term presence

Industrial manufacturing impact

- Semiconductors: Used in etching;
 wastewater often exceeds PFAS
 limits Electronics & Aerospace:
 Found in coatings, gaskets,
 cables; hard to replace
- Packaging: Common in wrappers, containers, non-stick layers; phase-out underway
- Regulatory pressure: EPA & global bodies enforcing phaseouts; compliance by 2029; rising costs

PFAS: The Global and Local Challenge Understanding the urgency and regulatory momentum


Global Challenges

- PFAS are persistent, bioaccumulative, and toxic—known as "forever chemicals"
- Found in water, soil, food, and human bloodstreams
- Over 14,000 compounds identified; few are regulated
- Slow in enforcement: US EPA now enforce 4ppt in drinking water.
- EU moving towards near total ban under REACH.
 - Stockholm Convention targets PFOS, PFOA, PFHxS for elimination

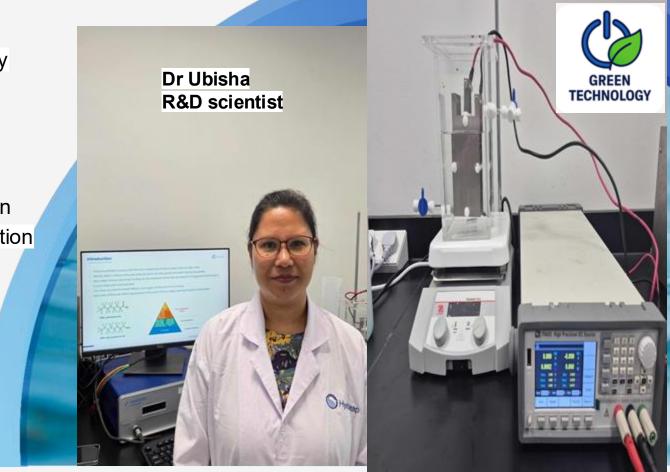
Singapore Context

- PFAS detected in seafood and drinking water (PUB monitoring since 2016)
- NEA regulates PFOS, PFOA, PFHxS under EPMA
- Firefighting foam phase-out by 2026. replace with fluorine free formulation
- SFA to align WHO guidance for drinking water standards

PFAS Regulation in APAC Countries (2025 Overview) Regional PFAS Trends

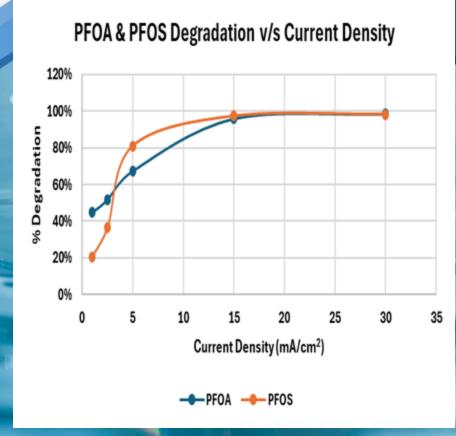
- Australia: Revised national plan restricts PFAS in drinking water, industrial discharge; targets phase-out in consumer goods
- Japan: PFAS designated under CSCA as Class I Specified Chemical; broader inclusion under review
- China: PFOA listed as priority chemical; national plan focuses on industrial discharge,
 product safety, and environmental monitoring
- South Korea included PFAS as hazardous substance in K-REACH) and align with EU

 REACH and OECD guidelines


PFAS Treatment Technologies

Chemical (Fenton)	Granulated Activated Carbon (GAC)	Reverse Osmosis, Ion Exchange	Electro Oxidation
hydrogen peroxide,, ferric chloride, ferric sulphate used	No chemical used	Anti-scalant and cleaning chemicals used	No chemical used
Power consumption low	Medium	High	High
Secondary waste • sludge	Secondary waste Backwash water Exhausted carbon reused after incineration	Secondary waste Brine generated Exhausted membrane and IX resin	Complete destruction with little sludge
high carbon footprint, limited scalability	high, scalable	high, complex scalability	low, scalable by module

Innovative PFAS Treatment: Hydroleap's Electro-Oxidation Technology


- Hydroleap approach is to concentrate and destroy
- Prefer PFAS concentration in ppb or ppm level
- This is more efficient and cost effective
- Lab trials from April 2025, treatability test
- Pilot from January 2026
- Uses Special coated Anode for better degradation
- Generates hydroxyl radicals for PFAS mineralization
- Mobile-ready, low chemical input, scalable for industrial wastewater

Innovative PFAS Treatment: Hydroleap's Electro-Oxidation Technology (Update)

- Both PFOA and PFOS can be degraded up to 98%
- Current density and Treatment time are two of the important parameters to achieve efficient degradation
- Effect of different electrodes and wastewater is studied
- Comparing EDR, EO-IEM and RO/NF for concentration step is in progress
- Optimization for lowering the total energy consumption

Thank you!

Explore sustainable, chemical-free Electrochemistry with us.

www.hydroleap.com

yh.goh@hydroleap.com

