The views expressed in this presentation are the views of the author/s and do not necessarily reflect the views or policies of the Asian Development Bank, or its Board of Governors, or the governments they represent. ADB does not guarantee the accuracy of the data included in this presentation and accepts no responsibility for any consequence of their use. The countries listed in this presentation do not imply any view on ADB's part as to sovereignty or independent status or necessarily conform to ADB's terminology.

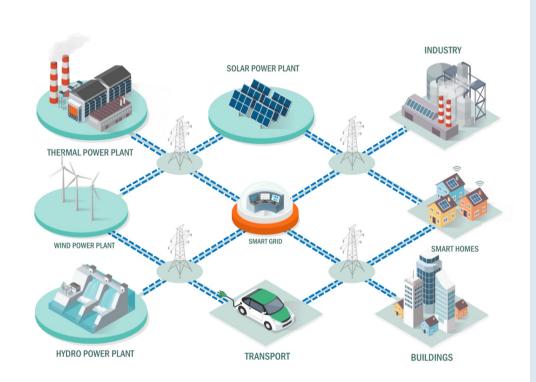
Role of Grid Digitalization and Renewable Energy in Building Smart Grids

ADB Support to address Digitalization of Grids in Sri Lanka

Driving Power Sector Reforms for Enhanced Renewable Energy Growth and Sector Performance Workshop

Jaimes Kolantharaj Principal Energy Specialist Asian Development Bank **Prof. José Aguado** Department Head, E. Eng Universidad de Málaga

Colombo, January 30, 2025



Prof. José Aguado *is Full Professor and Head of the Department of Electrical Engineering at the University of Málaga, Spain.*

His expertise lies in the operation and planning of electric energy systems, renewable energy integration, energy storage and electric vehicles.

His consultancy expertise spans over 30 developing countries, including Sri Lanka and other nations in Asia and in the Pacific.

The 4 'Ds' of Energy Transition: Opportunities for Sri Lanka

De-carbonization

70% RE share by 2030

Des-centralization

Highest Solar Roof-top penetration in the region (25%)

=

Digitalization

Increase the adoption of digital tools (AMI, Power Grid AI-DT, Smart Grid)

Democratization

Energy-share models to empower citizens

Grid Digitalization: From Smart meters to Power Grid Digital-Twins

Grid Integration Challenges: Soft- and Hard- Tools

Front-Runners and Soft-Tools

Front-runners: Denmark, Ireland, South Australia and Spain are integrating up to 75% of VRE in their annual generation

Essential Soft Elements:

- Modernize System Operation
- Improved Strategic Planning
- Overhauling Regulatory Frameworks (markets, business models, etc.)

Measures to Integrate VRE

Enhance Power Plant Capability

Retrofit conventional power plants Increase VRE technical requirements

Forecasting

VRE generation Net Load Power Flows

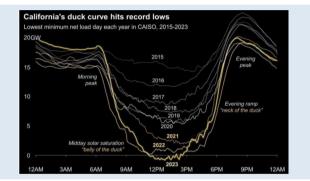
Demand Side Measures

Industrial, Commercial, Residencial Response Steer location on new demand

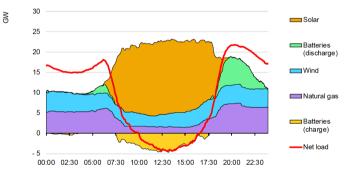
Modify System Operation Rules

Allow VRE Curtailment Balancing and Ancillary Service Market

Enhance Grid Capacity and Use

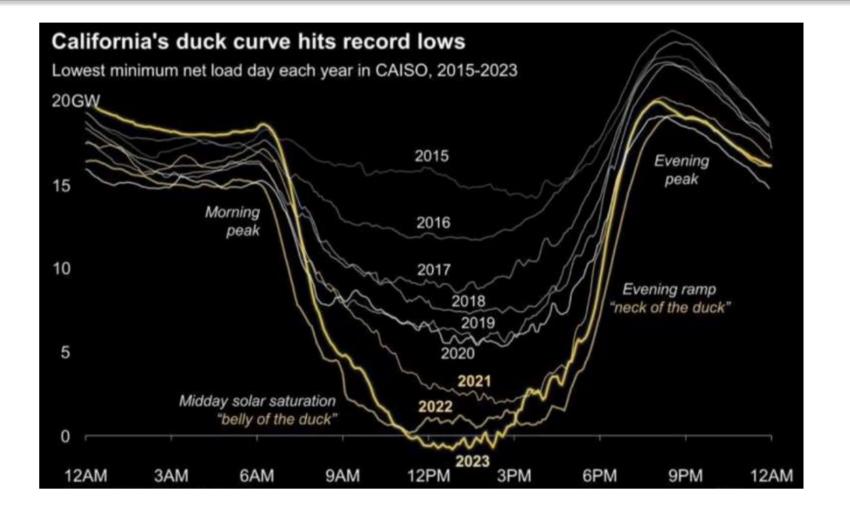

BESS, SYNCON, STATCOM Interconnection/Redundancy/mesh Balancing and Ancillary Service Market Steer Location of new VRE

Storage

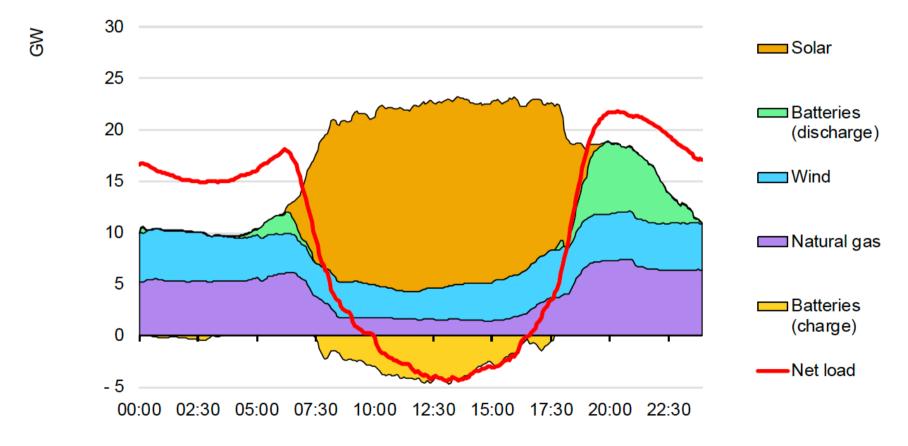

BESS

Pumped Hydro, Long duration Storage

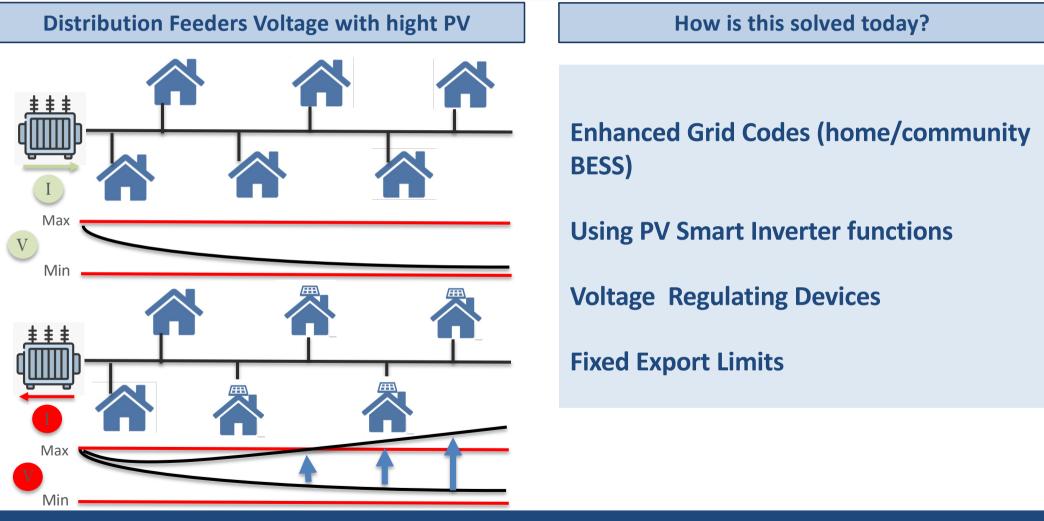
Solar Duck Curve and Beyond


Generation profile in California (CAISO) for selected technologies, 30 April 2024

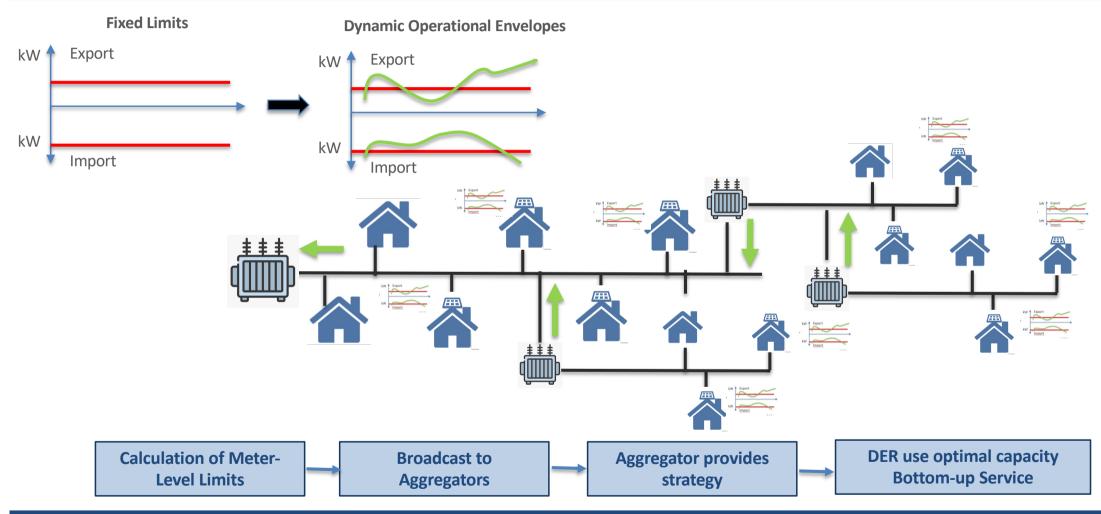
Challenges

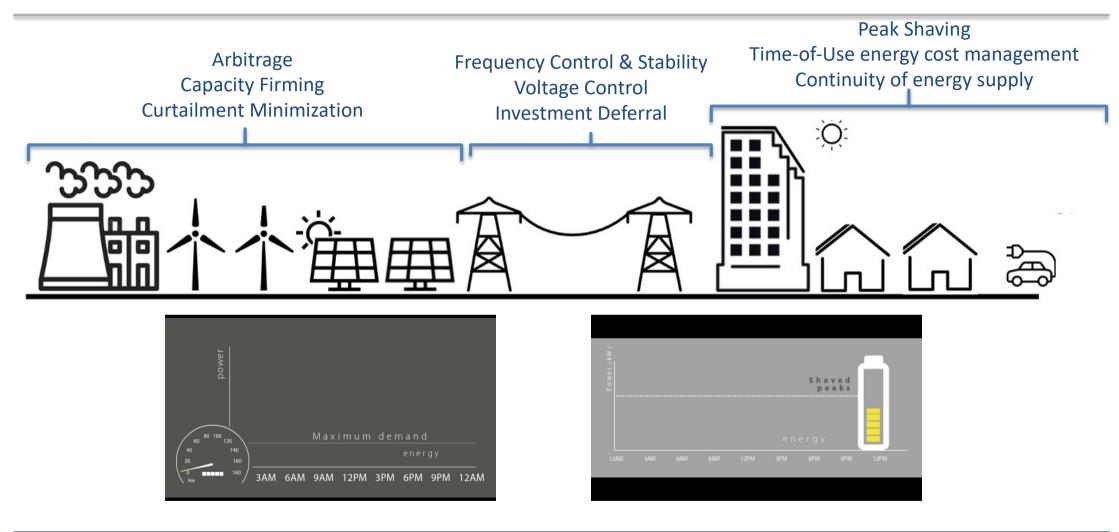

Behind the meter Visibility Grid Stability Price Volatility and negative prices

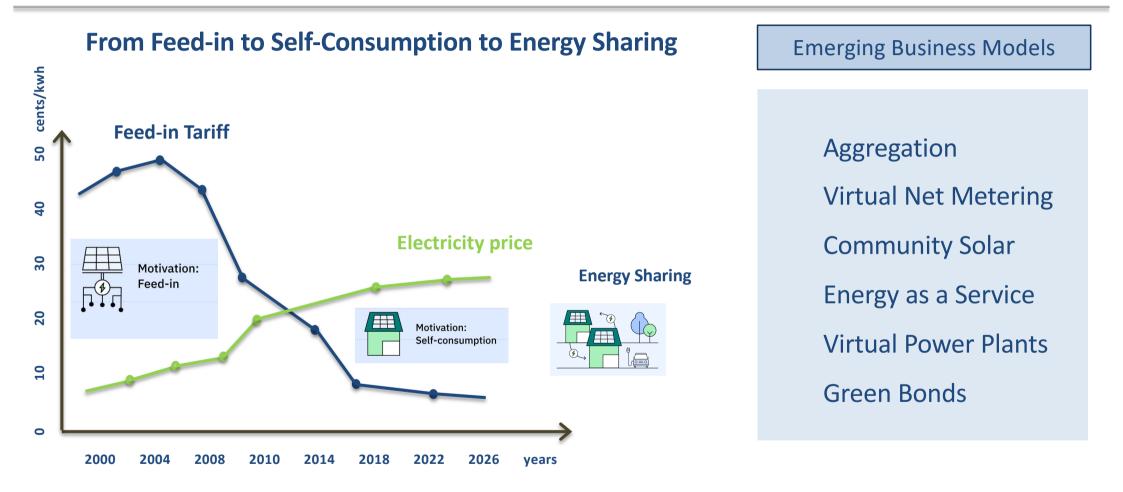
Grid Integration Challenges: Soft- and Hard- Tools



Grid Integration Challenges: Soft- and Hard- Tools


Generation profile in California (CAISO) for selected technologies, 30 April 2024


Distribution Grids with high RE penetration: Voltage Control


Distribution Grids with high RE penetration: Operational Envelopes

Battery Energy Storage Systems

New Business Models for Digital and Clean Energy Systems in SRL

11

ADB Support to address Digitalization of Grids in Sri Lanka

In Sri Lanka, ADB is leading a holistic effort to digitalise, increase RE share, enhance technology, processes and institutions in order to enable a clean and secure electricity system for the future

Jaimes Kolantharaj Principal Energy Specialist. Energy Sector Office Sectors Group Asian Development Bank

Key Transformations in Power System

Generation

Networks

Business Models

Regulated Generation Plants Synchronous Generators

Centralized Generation Plants Directional Power Flows Passive Distribution Networks Centralized Energy Storage

Ownership Models

Market / Serv

Consumers

Electric Light and Power

Variable RE Generation (VRE) Inverter Based Systems (IBS) Non-Dispatchable Energy

Distributed Generation Bi-directional Power Flows Active Distribution Networks* Distributed Energy Storage*

Market / Service Oriented Models*

Prosumers

Electric Light, Power and E-mobility

* Presently not available in Sri Lanka

Digital framework an essential requirement.

Digitalization and Green Energy Transition: Challenges & Strategies

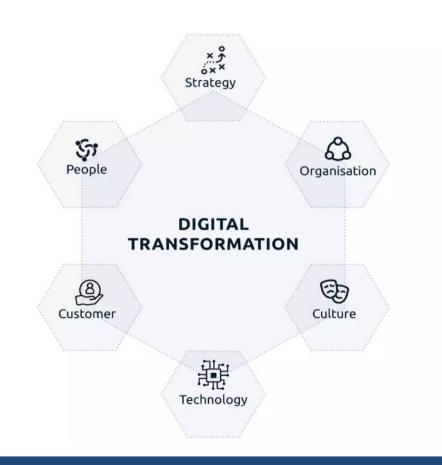
Renewable Energy Sources	Key Challenges	System Impact	Solutions	
RE Grid Integration	Intermittency Uncertainty Inverter Characteristics Network Flexibility	Reliability Issues Stability Issues Bi-directional power flows in distribution networks Voltage and Frequency Regulation System strength and inertia	Short Term, Medium / Long Term Strategies No quick fix Develop a time-based approach for systematic implementation	
Transparency and Competition	Limited transparency in Investments Limited Competition Static Energy Markets	High RE Prices Reduced RE deployment	Access to RE project info to stakeholders Establish Competitive Energy Markets / Business Models	

Digitalization and Green Transition: Critical for Competitive Market & RE

Immediate Interventions: Transparency in Investments and its Monitoring

No ▲▼	Project Name ▲ ▼	Status ▲ ▼	Technology ▲ ▼	AC Capacity (MW) ▲ ▼	Category ▲ ▼	Planned Commercial Operation ▲ ▼
1	Oddamawadi Batticaloa Solar Power Project	Critical	Solar PV	100	EOI	2023-11-09
2	Monaragala Sewanagala Solar Power Project	Critical	Solar PV	60	EOI	2023-11-09
3	Punanai West Solar Power Project	Critical	Solar PV	100	EOI	2023-12-11
4	Nilaveli Solar	Critical	Solar PV	100	EOI	2023-12-11
5	Kilinochchi Karachchi Ground Mounted Solar PV Power Project	Critical	Solar PV	100	EOI	2024-05-30
6	CEP Jaffna Solar Power Project	Critical	Solar PV	50	EOI	2024-05-13
	Orbital					

Renewable Energy Dashboard


 Online Monitoring Tool
Provide Access to relevant stakeholders

ADB Support:

- RED is ready for Monitoring
- Installed in SLSEA server
- Request MOE Support in Publishing

Digitalization and Green Transition: Critical for Competitive Market & RE

Immediate Interventions: Digitalization framework

Develop Policy and Roadmap
Create Clear Guidelines for future entities
Follow international Best Practices

ADB Support:
➢ Draft framework being prepared working with various stakeholders
➢ Urgent action required to implement the immediate Interventions

Generation Scenario in SL : Critical Need for Digitalization

Rooftop Solar Growth Trend 700.00 600.00 500.00 400.00 300.00 200.00 100.00 3.5

No. of Power Stations Installed Capacity (MW) **Ownership & Type of Power Station** 2022 2023 % Change 2022 % Change 2023 CEB: Total 30 30 3,071 3,218 4.8% -Major Hydro 18 18 1,413 1,413 --Thermal (Oil) 10 10 654 801 22.5% -Thermal (Coal) 1 1 900 900 . -NCRE (Wind) 104 1 1 104 . . IPP: Total 334 321 4.0% 1,013 1,163 14.8% Thermal (Oil) 1 3 200.0% 270 387 43.2% NCRE (Mini Hydro) 211 212 0.5% 414 419 1.3% NCRE (Wind) 17 19 11.8% 148 163 10.1% NCRE (Other) 14 14 7.9% 86 NCRE (Grid Connected Solar) 78 10.3% 130 139 4,084 351 364 3.7% 4,381 Total

GENERATION STATISTICS

2024 Rooftop Capacity : 600 MW Total rooftop Capacity : 1,420 MW

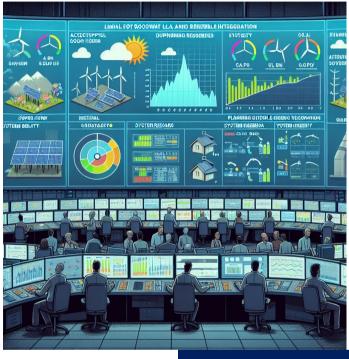
Rooftop solar installed capacity is about 25% of the installed capacity

Generation and Demand Curve: Critical Need for Digitalization

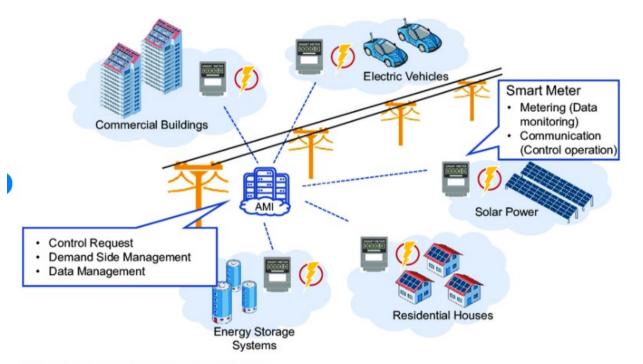
 Over 50% of day-time demand will be met through distributed RE

- > No Visibility
- Limited predictability
- Limited Control
- Reduced system strength and inertia
- Constraints on economic dispatch and maintaining system stability

🗖 Coal 🔳 Major Hydro 🔳 Thermal Oil 🔳 Wind 🗖 Solar - Telemetered 🔳 Biomass 🔳 Mini Hydro 🔳 Solar PVs - Invisible


Challenges in Power System Operation : Need for Digitalization

Limited Visibility Limited predictability Limited Control


VS

Power Grid Digital-Twins Full Visibility High predictability (Al driven) Flexibility and Control

Digitalization and Green Transition: Critical for Competitive Market & RE

Immediate Interventions: Automatic Metering Infrastructure (AMI)

- Smart Metering ++
- Key and first step of Digitalization
- Progressing Slow

ADB Support:

- Roadmap for AMI implementation (Draft Prepared)
- Urgent action is required to implementation

Smart metering configuration and functionalities.

Digitalization and Green Transition: Critical for Competitive Market & RE

Immediate Intervention: Voltage Response Settings for PV Inverters

- <u>Current Situation :</u> Over voltage Tripping in LV networks with high rooftop solar penetration
- Reduced PV Utilization and hosting capacity
- **ADB Support:**
- Committee has been formulated to recommend Voltage Response settings within the current statutory limit (230+/-6%)
- Urgent action is required for its implementation (new installations and Old ones)

Next step: Increase Statutory Voltage limit to 230+/-10%

- <u>Current Situation :</u> This is being followed in countries Like Australia and Germany complying with international standards.
- Further consultations with Sri Lanka Standards Institution and other stakeholders are required
- Committee shall continue to work towards it.

NSO Modernization and Digitalization:

Immediate to medium Term Interventions:

- Renewable Energy Center (REC) for NSO Operations
 - Immediate: Prepare technical specifications covering modern technologies and international best practices including AI-DT (digital Twinning)
 - Medium: Investment to support development of REC

Battery Energy Storage Solutions (BESS)

- Immediate: Prepare technical specifications and bid documents for Grid Scale BESS
- Identify BESS requirements in distribution system to manage power quality issues and improve hosting capacity
- Medium: Investment to support deployment of BESS

ADB Recently approved Loan has allocation to support both development of renewable energy Center and Grid scale BESS

ADB's Support on Futuristic Digitalization and Distributed Generation

Digital Microgrid Pilot with Universities

Project : AI-Powered Microgrids to Enable a Futuristic and Reliable Distributed Renewable Energy System

Implementing agencies : LECO

Design Team: UoJ, UoM, UoP, UoR

Key Outputs :

Develop, Establish and Pilot Test ; (a) Digitilization-framework for microgrids (b) Albased network management platform (c) Lifeline power market through Microgrid (d) Enhancing PV hosting capacity through BESS and Voltage Regulating Equipment

Status : In Progress

Network Upgrading to facilitate RE, Grid Scale BESS, RE Control Centre and Virtual Net Metering

Project : Power System Strengthening and Renewable Energy Integration Project

Implementing agencies : CEB, LECO

Key Outputs :

(a) Tx and Dx grid development and modernization to facilitate RE integration (b) Implement Grid-scale battery energy storage system (50 MWh)(c) Establish Renewable Energy Control center

Status : In Progress

Project : Virtual Net Metering Project (concessional loan and grant funding)

Key Outputs : (a) Virtual Net-Metering System to develop a utility-driven aggregator rooftop PV business model (b) Establish Social Compensation Electricity Pool through VNM Status : Being Processed (Support from EU and JFJCM)

Digitalization : Critical for future Distributed Generation

The Outcomes of DIGITALIZATION is Critical for Distributed Generation:

Distributed Generation	Distributed Storage	Demand Reduction	Demand Response
		A	

Thank You