

Environment and Nature

LEARNING WEEK 2025

7–10 October 2025 | Multifunction Halls 2–3 | ADB Headquarters

THIS TRAINING IS ORGANIZED BY THE ENVIRONMENT COMMUNITY OF PRACTICE

Presentation

Applying Dynamic Systems Modeling for the Circular Economy

Marios Kostis
ADB Consultant

How can ADB Apply Dynamic Systems Modeling ADB

Transforming Circular Economy Policy into Measurable Impact

"What if ADB could predict the outcomes of waste management policies before investing millions?"

SINGAPORE'S SUCCESS: NEA Zero Waste Masterplan

System dynamics modeling predicted policy outcomes, saving \$200M in misdirected investments

Recycling Rate

Achieved

\$200M

Investment Savings

30 yrs Landfill Life Extended

Infrastructure Investment Planning & Risk Assessment

Model long-term infrastructure ROI and test investment scenarios before committing capital

ADB SECTOR APPLICATIONS:

URBAN

Waste-to-energy facility sizing for Manila's metro expansion (System Dynamics)

WATER

Wastewater treatment capacity planning under climate scenarios (Hybrid Models)

TRANSPORT

EV battery recycling infrastructure network design across SE Asia (Agent-Based)

Policy Testing & National Strategy Development

Simulate policy combinations and regulatory frameworks before implementation

ADB SECTOR APPLICATIONS:

ENVIRONMENT

Extended Producer Responsibility scheme impacts in Viet Nam (System Dynamics)

AGRICULTURE

Organic waste composting policy for rural Viet Nam (Discrete Event Simulation)

INDUSTRY

Industrial symbiosis incentive structures for Chinese industrial parks (Agent-Based)

Regional Coordination & Cross-Border Material Flows

Optimize regional circular economy strategies and predict transboundary impacts

ADB SECTOR APPLICATIONS:

TRADE

ASEAN plastic waste trade flows and recycling capacity gaps (System Dynamics)

ENERGY

Regional biogas from organic waste potential in Greater Mekong Subregion (Hybrid)

FINANCE

Green bond market development for circular economy projects (Agent-Based)

70%

Understanding Dynamic Systems Modeling

Captures how circular economy elements **interact, change, and influence each other over time**.

Three Model Paradigms

A model is a simplified representation of reality—used to simulate, explain and predict.

White Box Models

Built from known relationships and theory

Basis: Mathematical equations

Strength: High interpretability

Transparency: Complete visibility

Example: Material flow equations for waste

streams

Grey Box Models

Combines theory with empirical data

Basis: Hybrid approach
Strength: Balanced accuracy

Transparency: Partial visibility

Example: Material flow equations for waste

streams

Black Box Models

Built from known relationships and theory

Basis: Mathematical equations

Strength: High interpretability

Transparency: Complete visibility

Example: Material flow equations for waste

streams

How They Work: Core Components

Differential equations, probability, agent rules

Data Integration

Historical trends, stakeholder behavior, economics

Outputs

Scenarios, sensitivity analysis, policy forecasts

Modern Tools Simplify Creation

Software Platforms

Vensim, AnyLogic, Stella, Insights Maker, Simul8 etc.

Rapid Testing

Scenario exploration in hours, not months

Visual Interface

No coding required for basic models

User-Friendly

Drag and drop model building

AI & Data Analysis

Improving model accuracy

Automated model building

Elimination of many manual actions

INTERNALALTriis:information is accessible to PADB Management and Staffalthmay be shared outside tADB with appropriation

Four Core Modeling Methods

System Dynamics (SD)

Best for: Policy-level strategic planning with feedback loops

CHARACTERISTICS:

- Aggregate modeling
- Stock & flow structures
- Feedback analysis

Long-term (5-30 years)

ADB APPLICATIONS:

- →Waste generation forecasting under GDP scenarios
- → Recycling infrastructure capacity planning

Discrete Event Simulation (DES)

Best for: Operational efficiency and process optimization

CHARACTERISTICS:

- Process flow modeling
- Queue analysis
- Resource utilization
- Short-medium term

ADB APPLICATIONS:

- →Waste collection route optimization
- →Sorting facility throughput analysis

Agent-Based Modeling (ABM)

Best for: Behavior-driven outcomes and heterogeneous actors

CHARACTERISTICS:

Individual entities

Emergent behavior

Spatial dynamics

Behavioral economics

ADB APPLICATIONS:

- →Informal waste sector integration modeling
- → Market formation for secondary materials

Hybrid Models

Best for: Complex systems requiring multi-level analysis

CHARACTERISTICS:

- Combines 2+ methods
- Multi-scale integration
- Micro & macro dynamics
- Comprehensive view

ADB APPLICATIONS:

- →Policy (SD) + Consumer behavior (ABM)
- → Multi-sector analysis (land, water, plastic, agriculture etc.)

Emerging: Digital Twins & Next-Gen Dynamic Modeling

Real-time Data

Live integration with operational data

Auto-updating
 Models learn from new data

Live Decisions

Instant predictions and decision support

INTERNALAL This sinformation is access sible at 6 PADB a Management and f Staffaythmay abed shared solution of the proprietion of the properties of the pr

Case Study Implementation

Plastic Waste Management Policy Simulation – Caballero et al., 2023

Context: Urban area facing increasing plastic waste and inadequate recycling infrastructure

1 Problem Definition

What This Entails:

- Define problem and intended purpose of study
- Identify system boundaries (what's in, what's out)

Positive feedback (+)

- Determine key performance indicators (KPIs)
- Engage stakeholders to understand priorities

Stock-flow maps) Natural Decomposed Plastics Plastic Use Environment Awareness and Movement Total Plastic Production Littered Plastics Non-Recycled Plastics Recycled Plastics

2 Model Conceptualization

What This Entails:

- Map causal relationships and feedback loops
- Choose appropriate modeling method(s)
- Define variables, parameters, and data needs
- Create conceptual diagrams (causal loop diagrams,

Step 1: Case Study Application

Purpose of the model:

Analyzing the effectiveness of different strategies and plastic waste management policies

System Boundaries: What is the system?

- Plastic generation
- Collection systems
- Sorting facilities
- Recycling processes
- Landfilling

Step 2: Case Study Application

Method selected: System Dynamics (SD)

Rationale: Policy focus, aggregate flows, long-term trends, feedback effects

Key variables:

Stocks: Total plastic waste, Plastic production

Flows: new plastics rate, recycling rate, natural decomposed plastics rate etc.

Variables to define the interrelationships of the system: non-recycled plastics, plastic use environment awareness, littered plastics

Negative feedback (–)

Case Study Implementation

Plastic Waste Management Policy Simulation – Caballero et al., 2023

Context: Urban area facing increasing plastic waste and inadequate recycling infrastructure

3 Model Construction

What This Entails:

- Translate conceptual model to formal equations
- Build model in chosen software
- Set initial conditions and parameter values
- Establish time horizon and simulation steps

4 Verification & Validation

What This Entails:

- Check model logic correctly implemented
- Ensure model accurately represents real system
- Test extreme conditions
- Sensitivity analysis

Contribution of Consumer Behavior Plastic Use Environment Awareness and Movement Plastic Production Plastic Production Recycled Plastics Non-Recycled Plastics Non-Recycled Plastics Non-Recycled Plastics Non-Recycling Rate

Step 3: Case Study Application

From conceptual model (CLD) to formal equations:

S&F diagram automatically by the **Vensim modeling software** \rightarrow User assigns mathematical relationships between the variable

Model's Equations:

Recycling rate = Collection Rate × Sorting Efficiency d(Plastic in Landfill)/dt = Waste to Landfill – Decomposition Initial conditions and parameter values:

Historical data on plastics from 1950 (Our World in Data (Ritchie & Roser, 2022)

Step 4: Case Study Application

Checking model logic ⇒ **expert review**

Ensure model accurately represents real system

Base run of Vensim coherent and corresponding to historical data

Sensitivity analysis

Variation of influencing parameters showed coherent outputs in magnitude

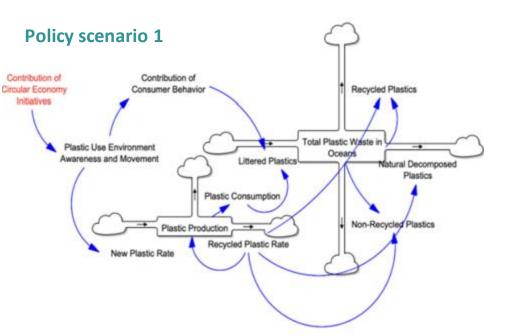
Case Study Implementation

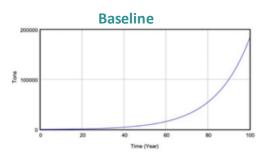
Plastic Waste Management Policy Simulation - Caballero et al., 2023

Context: Urban area facing increasing plastic waste and inadequate recycling infrastructure

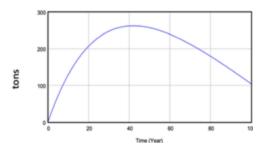
ADB

Model application & Scenario analysis

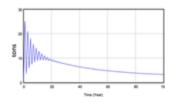

6 Evolution &

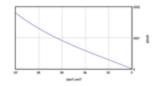

What This Entails:

- Design policy scenarios to test
- Run simulations for each scenario
- Analyze outputs and compare alternatives


Wha Reconfliguration

- Monitor real-world implementation vs simulation
- Update model with new data
- Refine parameters on new outcomes
- Improve with ABM and Hybrid Models


CE initiatives for Increased Awareness



Step 5: Case Study Application

Policy Scenarios tested:

- → Reformed plastic production policy
- → Increase of plastic litter cleanup activities
- → Policy circular economy initiatives (capacity-building)

Analyze outputs and compare:

Simulations show an increase in plastic production with an increased effectiveness for upstream actions

Step 6: Case Study Application

Monitor real-world implementation

Following results to update the model based on real situation

Refine parameters on new outcomes

Reiterative process to improve model, data quality etc.

Improving model

Study suggests impact of awareness needs to be studied more ⇒ ABM models to study emergent behaviour and use insights for current model

Unlocking Computational Modeling Potential at ADB

Who

Project Managers

Loan Officers

Evaluation officers

When

Project Design

Loan Approval

Project Implementation

Monitoring & Adaptation

How

Build models templates for new projects

Simulate loan impact based on CE criteria

Continued improvement of models for better effectiveness

Use to evaluate impact of project

Dynamic Systems Modeling—Next Steps

Prepare simple pilot test for existing project

Capacity Building of a small team

Model Construction on specific process/ project

Analyze Results

Scale

THANK YOU!

