This is not an ADB material. The views expressed in this document are the views of the author/s and/or their organizations and do not necessarily reflect the views or
policies of the Asian Development Bank, or its Board of Governors, or the governments they represent. ADB does not guarantee the accuracy and/or completeness of
the material’s contents, and accepts no responsibility for any direct or indirect consequence of their use or reliance, whether wholly or partially. Please feel free to
contact the authors directly should you have queries.

.ssfsxﬁ

FUND

TECHNICAL PRESENTATION 1:

“Glaciers to Farms (G2F): Glaciers, climate change
and water supplies in High Mountain Asia: what we
know and what we don't know”

Stephan Harrison, Professor of Climate and
Environmental Change

Pegasys Ltd.

University of Exeter

Director: Climate Change Risk Management
www.ccrm.co.uk

University of
CCRM |ttt ®¥ Reading  ~4PEGASYS

CHAMNGING LIVES CHANGING WORLDS




Pegasys Ltd., ADB Consultant

Professor Stephan Harrison is a globally recognized climate scientist with over
30 years of research experience in geomorphology and the impacts of climate
change on high mountain glacial systems. He is a Professor of Climate and
Environmental Change at the University of Exeter and currently serves as the
Climate Change Lead for the UN GEO-7 Report. Listed among Reuters’ top
global climate scientists, he has advised governments, international
organizations, and NGOs—including Lloyd’s of London, the UK Foreign and
Commonwealth Office, DFID, and Oxfam—on climate risk and adaptation. He
previously chaired the UK Government’'s Climate Change Expert Committee
(2011-2017) and Natural Hazards Risk Committee (2017-2021). His pioneering
research includes the first 3D reconstruction of the Patagonian Ice Sheet, global
assessments of glacial lake outburst floods (GLOFs), and studies on rock
glaciers as water sources in arid regions. He has conducted fieldwork across
South America, High Mountain Asia, the European Alps, and Scandinavia, and
has published widely in both geomorphology and climate science. Professor
Harrison holds a BSc from the University of Leicester and a PhD from the
Council for National Academic Awards (CNAA) and continues to lead climate
modelling and risk projects across Africa and Asia while speaking at major
international scientific and policy forums.
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We know:

* Climate change is happening and glacier mass balance is overall
negative

* These trends will continue
* This will impact future water supplies

* Glacier hazards will change in frequency and magnitude



Global mass balance trends
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Shahgedanova et al. (2018) 10.1016/j.ihydrol.2018.08.001:

* Streamflow is modified throughout the region except headwaters
* In natural catchments, there is no evidence for streamflow reduction
* Increase in JIA flow in catchments with glacierization >10% (e.g. UA)


https://doi.org/10.1016/j.jhydrol.2018.08.001
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Shahgedanova et al. (2020) doi.org/10.3390/w12030627:

* Future projections for several catchments in lle Alatau using multi-model
downscaled ensemble of climate projections for RCP2.6 and RCP8.5

* Peak water has been reached

* Decline in July-August flow (glacier melt) in catchments with glacierization <10%

* Increase in April-June flow (snow melt)
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What we don’t know:

How regional-scale catchments will respond to climate change
Whether GLOFs will increase in frequency and/or magnitude
How glaciers will respond to warming

The role of rock glaciers in regional hydrology

Whether extreme events are stochastic or climate-related



Gap in Knowledge and Policy-relevant
Issue: Sources of Water

Timing of peak flow depends on:
* Projected temperature change

* Projected precipitation change and share of solid /
liquid precipitation

e Glacierization of catchments and characteristics of
glaciers (size, elevation)

* How glacier cover will change in the future

* Timing of glacier melt in relation to seasonal
precipitation maximum (minimum)

e Contribution of various sources to total runoff

Adaptation is affected by:
* Relative contributions of renewable (rain,

* Liquid precipitation

- seasonal snow) and non- or slowly renewable
< Snow melt Included in o ) . y
. _ ‘ hydrological (glacier and ground ice) sources
* Glacier melt (including models « Different response time: Snow — instant, glaciers
show and ice) — medium (years), ground ice — slow (decades)

Analysis of isotopic (oxygen, hydrogen) composition
, Not included in models of water is the best way to obtain this knowledge
* Rockglaciers but are important on and constrain models. Extensive regional project
* Ground water regional / local scales coordinated by the University of Reading and IAEA.

* Permafrost



Rock Glaciers and catchment
hydrology

Bob Wester

More than 44,000 rock glaciers in Tibet (Sun et al 2024)
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The first systematic rock glacier inventory for the Greater Himalaya
~25,000 rock glaciers with an estimated areal coverage of 3,747 km?2.

Rock glaciers are estimated to contain a WVEQ of 51.80 + 10.36 km?
(47.48 £ 9.50 Gt).

Equates to a rock glacier: glacier WVEQ ratio of 1:24, ranging from 1:42
to 1:17 in the East and Central Himalaya, respectively.

Jones et al 2021; Harrison et al 2024



Glacial Lake Outburst Floods: Global and Regional

Global pattern of
glacial lake outburst

floods
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Extreme Events: rock falls and debris flows

27M cubic metres

3700m fall

Over 200 fatalities

glacier ice

Shugar et al 2021

Cascading Risk:

rock fall melted glacier
produced debris flow
killed over 200 people and
destroyed HEP scheme

Largest such eventon record
Was it caused by climate change?

Debris Flows (Mamadjanova etal, 2018
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ADB GZF catchments

Catchments:
@ Top left: Kura

Top right: Naryn

Bottom left: Pyan]
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White — grid points centred near mountain ridges, above the snow line, that best represent the

glaciated regions, for point is 683mwhich the ERA5 snow data appear reasonable. All points are
above 4000m elevation.

Orange — grid points centred near mountain ridges, above the snow line, that best represent the
glaciated regions, but for which the ERA5 snow data do not appear reasonable and have been
ignored. All points are above 4000m.

Blue — grid points centred at high elevation below the snow line, and thus providing a wider picture
but not indicative of changes to glaciers per se. Elevations range from 1906m to 4755m.

Green —grid points centred at lower levels, perhaps agricultural regions, not necessarily directly
within the basin itself, but providing a wider picture. The elevation for the single included grid.



ADB G2F Project 1: model projections

Kura Temperature Naryn Temperature Pyanj Temperature
JJA JJA
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ADB G2F Project 3

Climate Risk
Assessment

Hazard (Climatic) Hazard (Glacial) Kura current Kura Future Residual Risk
Very Low Very Low Very low
Very Low Very Low Very Low
Glacier retreat Very Low Low Very low
Very Low Low Low
Moderate Moderate Very low
Increase in temperature
(long term trend) Melting permafrost No Risk No Risk No Risk
Shorter snow season duration
Moderate Moderate Low
Melting of rock glaciers and acceleration of
g g No Risk No Risk No Risk
creep
Declinein precipitation: Negative glacie
inein precipitation: Negative glacier Low Low Low

Change in accumulation
seasons percipitation

mass balance, retreat of glaceirs

Increase or positive anomaliesin
precipitation: Oversaturation of soils and
substrates

Decline or negative anomaliesin
precipitation: reduced accumulation of
seasonal snow

Extreme snowfall

Complexinteractions with other
meteorological variables

Change in melt season
precipitation

Reduced reflectance of glaciers leading to
faster melting

Negative anomalies / drought

Positive anomalies in precipitation

Change in ratio of snow and

Reduced snow accumulation

Moderate

Moderate

Moderate

Moderate

Low

Moderate

Moderate

Moderate

rain More frequent 'rain on snow' events
Rapid degradation of glaciers
Heatwaves Degradation of permafrost
Rapid snow melt
Rapid degradation of glaciers
Droughts Long-term impact on permafrost

Insufficient water supply

No Risk

No Risk

No Risk

No Risk

Moderat+L11:L.29¢e




The Future?

Atmospheric
warming/
Extreme events
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Increasing abundance and area of glacial lakes
especially in Central and High Mountain Asia

* Over 4,500 glacial lakes in Tien Shan, covering a
combined area of 205.73 £ 0.17 km? in 2023 (Chen
etal., 2024)

* Tajikistan (Pamir and Hissar-Alay): ~3330 lakes with
individual area >200 m? located within 10 km
distance from glacier tongues with a combined
area of 130.59 km?

Potential increase in frequency of GLOF
* Frequency of GLOF peaked in the 1970s-1980s
* Noincrease in GLOF frequency to date
* Increasein frequency of GLOF in the future is

Incré’é)sséiiptlﬁ'ntensity of precipitation and frequency of
share of rain in total precipitation
* Flash floods, landslides and debris flows caused by
intense rainfall
* Upwards extension of the debris flow formation zone in
the Tien Shan
* Increasing frequency of pluvial debris flows in Uzbekistan
Snow avalanches
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Harrison et al. (in press)




Thank you

Stephan Harrison: stephan.harrison@ccrm.co.uk
stephan.harrison@exeter.ac.uk
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