This is not an ADB material. The views expressed in this document are the views of the author/s and/or their organizations and do not necessarily reflect the views or policies of the Asian Development Bank, or its Board of Governors, or the governments they represent. ADB does not guarantee the accuracy and/or completeness of the material's contents, and accepts no responsibility for any direct or indirect consequence of their use or reliance, whether wholly or partially. Please feel free to contact the authors directly should you have queries.

TECHNICAL PRESENTATION 1:

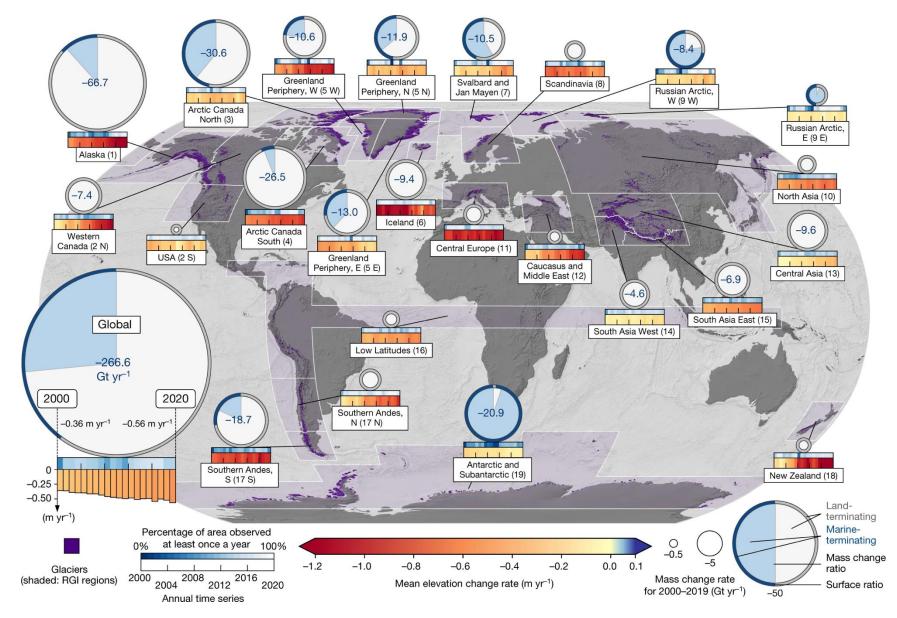
"Glaciers to Farms (G2F): Glaciers, climate change and water supplies in High Mountain Asia: what we know and what we don't know"

> Stephan Harrison, Professor of Climate and Environmental Change

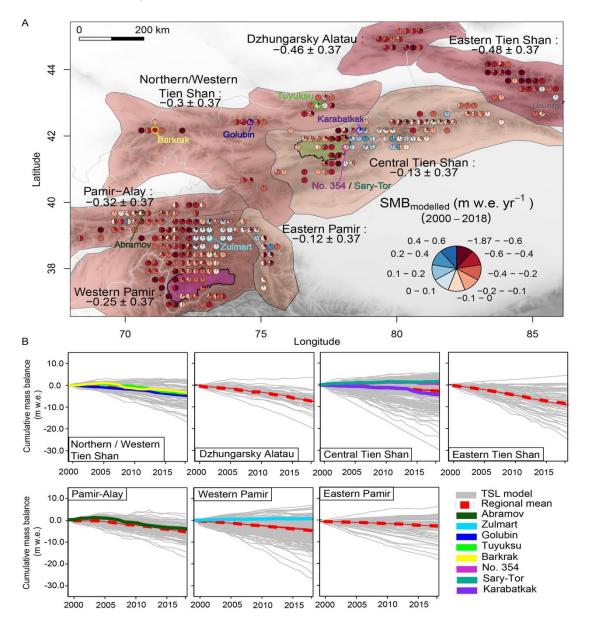
> > Pegasys Ltd. University of Exeter

Director: Climate Change Risk Management www.ccrm.co.uk

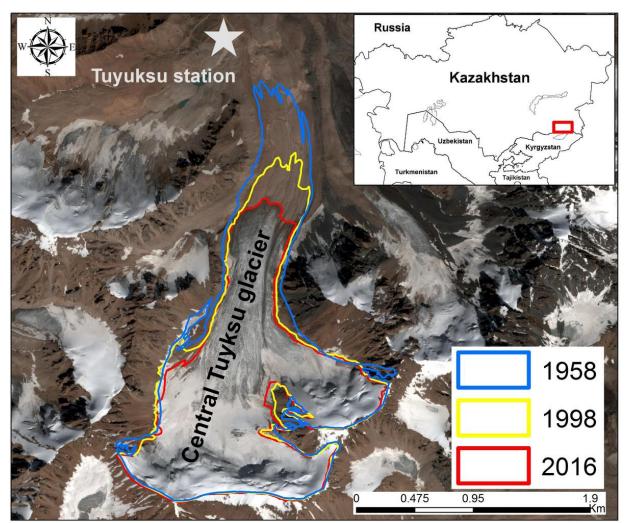
Stephan Harrison Pegasys Ltd., ADB Consultant



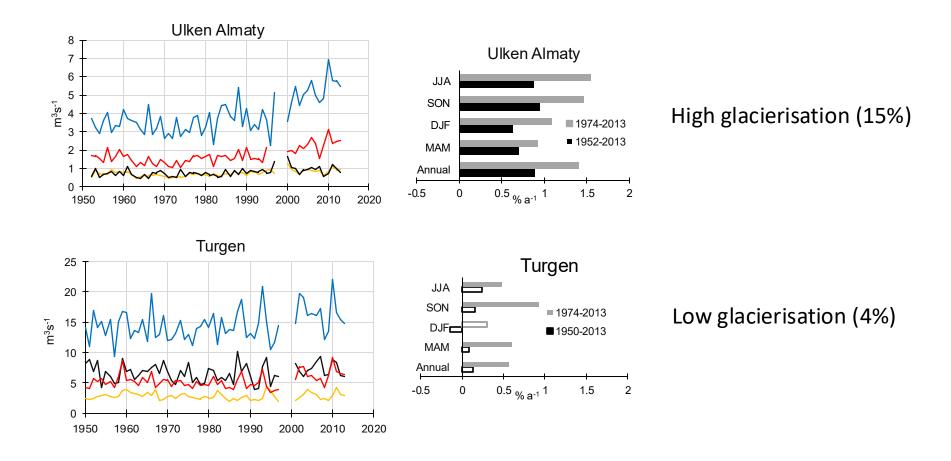
Professor Stephan Harrison is a globally recognized climate scientist with over 30 years of research experience in geomorphology and the impacts of climate change on high mountain glacial systems. He is a Professor of Climate and Environmental Change at the University of Exeter and currently serves as the Climate Change Lead for the UN GEO-7 Report. Listed among Reuters' top global climate scientists, he has advised governments, international organizations, and NGOs—including Lloyd's of London, the UK Foreign and Commonwealth Office, DFID, and Oxfam—on climate risk and adaptation. He previously chaired the UK Government's Climate Change Expert Committee (2011–2017) and Natural Hazards Risk Committee (2017–2021). His pioneering research includes the first 3D reconstruction of the Patagonian Ice Sheet, global assessments of glacial lake outburst floods (GLOFs), and studies on rock glaciers as water sources in arid regions. He has conducted fieldwork across South America, High Mountain Asia, the European Alps, and Scandinavia, and has published widely in both geomorphology and climate science. Professor Harrison holds a BSc from the University of Leicester and a PhD from the Council for National Academic Awards (CNAA) and continues to lead climate modelling and risk projects across Africa and Asia while speaking at major international scientific and policy forums.


- Climate change is happening and glacier mass balance is overall negative
- These trends will continue
- This will impact future water supplies
- Glacier hazards will change in frequency and magnitude

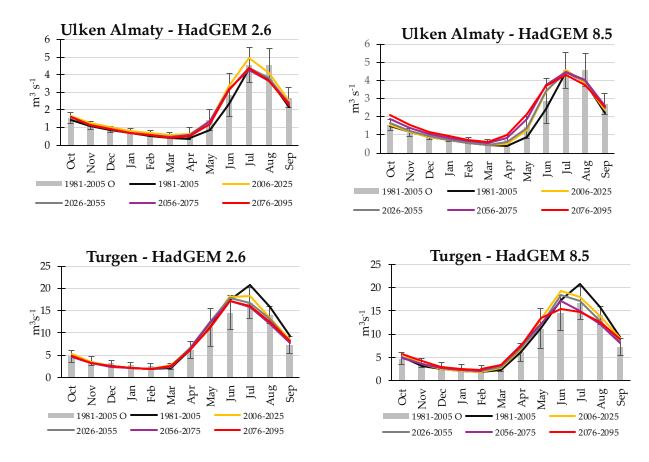
Global mass balance trends



Huggonet et al. 2021


Regional mass balance

Local mass balance



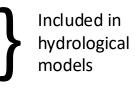
Kapitsa et al 2020

Shahgedanova et al. (2018) <u>10.1016/j.jhydrol.2018.08.001</u>:

- Streamflow is modified throughout the region except headwaters
- In natural catchments, there is no evidence for streamflow reduction
- Increase in JJA flow in catchments with glacierization >10% (e.g. UA)

Shahgedanova et al. (2020) doi.org/10.3390/w12030627:

- Future projections for several catchments in Ile Alatau using multi-model downscaled ensemble of climate projections for RCP2.6 and RCP8.5
- Peak water has been reached
- Decline in July-August flow (glacier melt) in catchments with glacierization <10%
- Increase in April-June flow (snow melt)


What we don't know:

- How regional-scale catchments will respond to climate change
- Whether GLOFs will increase in frequency and/or magnitude
- How glaciers will respond to warming
- The role of rock glaciers in regional hydrology
- Whether extreme events are stochastic or climate-related

Gap in Knowledge and Policy-relevant Issue: Sources of Water

Timing of peak flow depends on:

- Projected temperature change
- Projected precipitation change and share of solid / liquid precipitation
- Glacierization of catchments and characteristics of glaciers (size, elevation)
- How glacier cover will change in the future
- Timing of glacier melt in relation to seasonal precipitation maximum (minimum)
- Contribution of various sources to total runoff
 - Liquid precipitation
 - Snow melt
 - Glacier melt (including snow and ice)

- Permafrost
- Rock glaciers
- Ground water

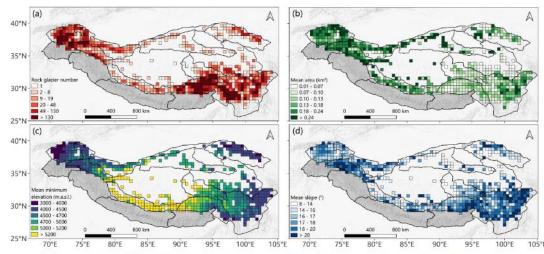
Not included in models but are important on regional / local scales

Ulken Almaty, Ile Alatau, Kazakhstan

Adaptation is affected by:

- Relative contributions of renewable (rain, seasonal snow) and non- or slowly renewable (glacier and ground ice) sources
- Different response time: Snow instant, glaciers – medium (years), ground ice – slow (decades)

Analysis of isotopic (oxygen, hydrogen) composition of water is the best way to obtain this knowledge and constrain models. Extensive regional project coordinated by the University of Reading and IAEA.


Rock Glaciers and catchment hydrology

36°N 504.00 km³ 14.94 km³ CHINA [7] angtze 34°N 553.00 km³ 31.80 km³ 215.00 km³ 5.06 km³ Mekor W-HIMALAYA 7,335 1:17 1:42 PAKISTAN 32°N-[5] C-HIMALAYA E-HIMALAYA Salween 10,060 7,573 Glacier WVEQ RG WVEQ RG:Glacie WVEQ Rati 30°N-REGION Total RGs ahmaputra Intact Rock Glaciers Relict Rock Glaciers 28°N-O Unclassified Rock Glaciers INDIA Greater Himalaya boundary Major river basins [n] BHUTAN RGI 6.0 glacier outlines [3] National borders [4] 26°N-500 250 Area >3225 m a.s.l. kilometres Major rivers 84°E 06 76° ŝ 86° č

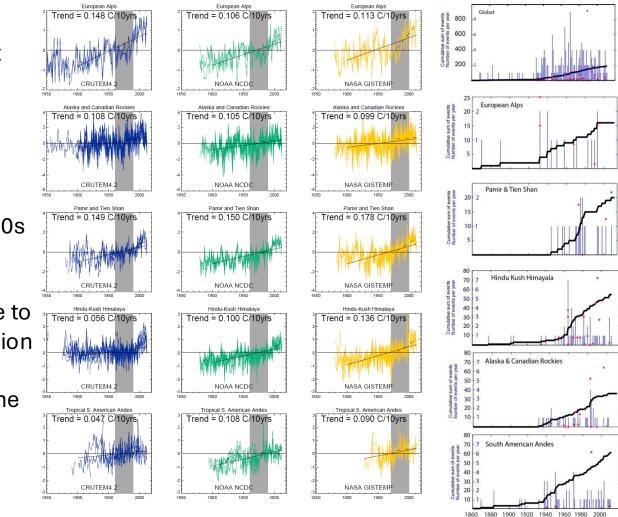
Bob Wester

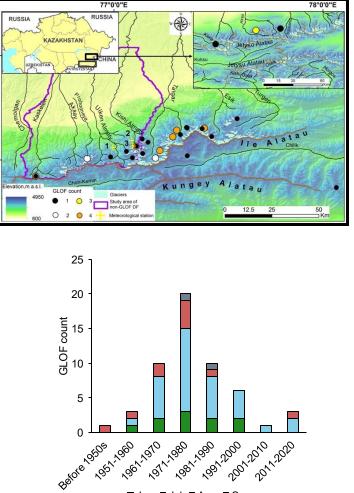
More than 44,000 rock glaciers in Tibet (Sun et al 2024)

The first systematic rock glacier inventory for the Greater Himalaya ~25,000 rock glaciers with an estimated areal coverage of 3,747 km².

Rock glaciers are estimated to contain a WVEQ of 51.80 \pm 10.36 km³ (47.48 \pm 9.50 Gt).

Equates to a rock glacier: glacier WVEQ ratio of 1:24, ranging from 1:42 to 1:17 in the East and Central Himalaya, respectively.

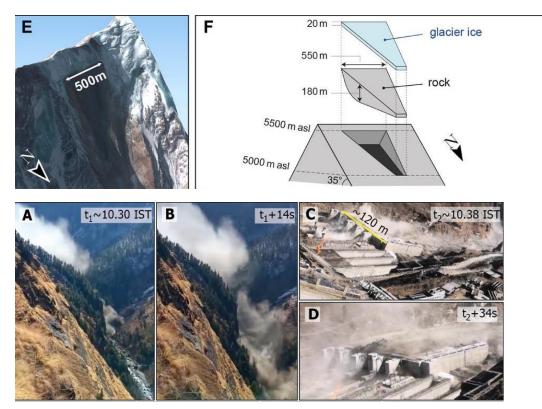

Jones et al 2021; Harrison et al 2024


Figure 7, Rock glacier (a) density. (b) area. (c) minimum elevation and (d) slope averaged over grid cells of 50 km × 50 km

Glacial Lake Outburst Floods: Global and Regional

Global pattern of glacial lake outburst floods

- 1. Warming in all mountain regions
- 2. GLOF peak in 1970s and 80s
- 3. Delayed response to LIA glacier recession
- 4. Implications for the future



■Jun ■Jul ■Aug ■Sep

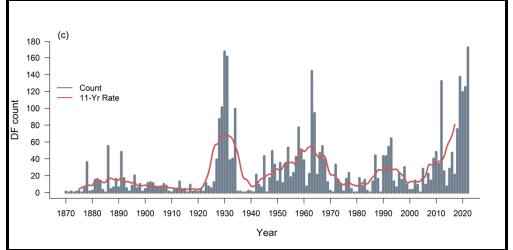
Shahgedanova et al., 2024

Extreme Events: rock falls and debris flows

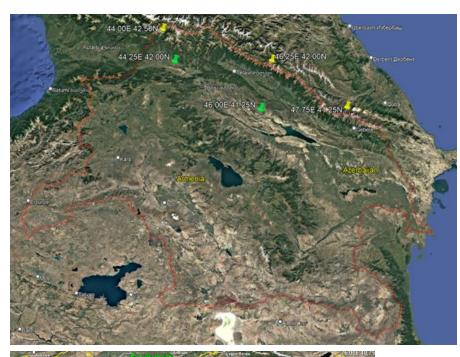
2021 Chamoli disaster

27M cubic metres

Shugar et al 2021


3700m fall

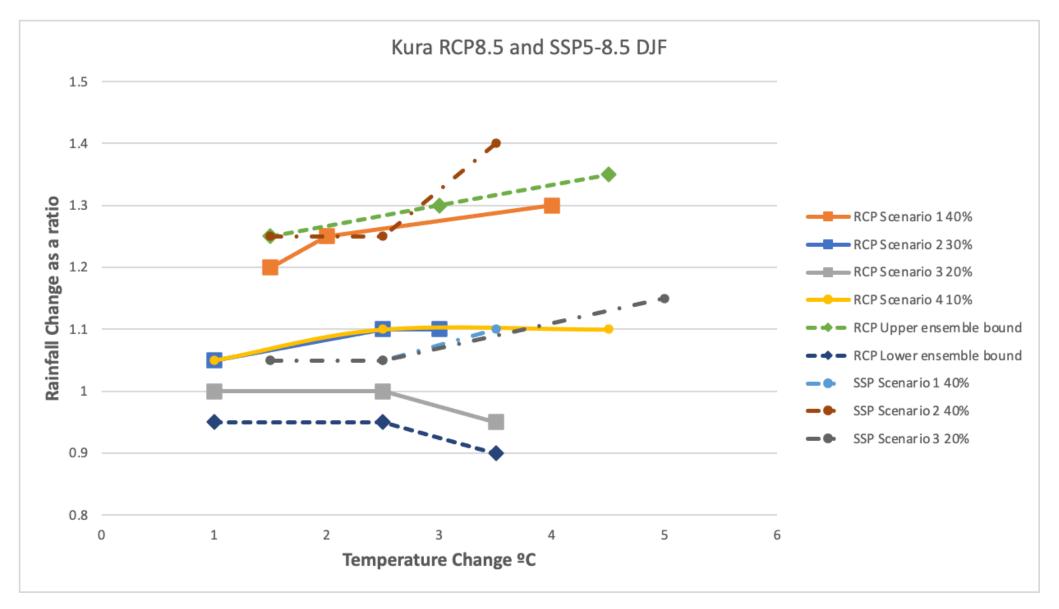
Over 200 fatalities


Cascading Risk:


- rock fall melted glacier
- produced debris flow
- killed over 200 people and
- destroyed HEP scheme
- Largest such event on record
- Was it caused by climate change?

ADB G2F catchments

Catchments: Top left: Kura Top right: Naryn Bottom left: Pyanj

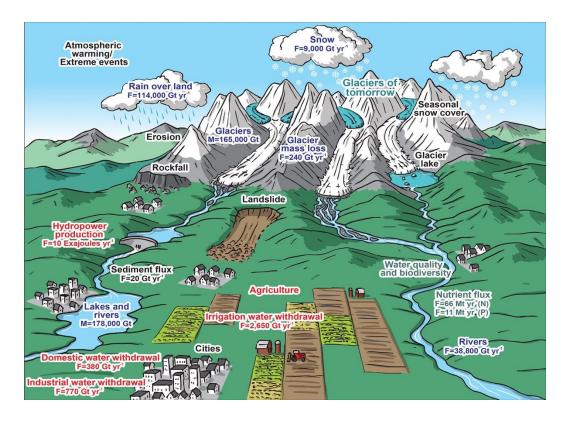

- White grid points centred near mountain ridges, above the snow line, that best represent the glaciated regions, for point is 683mwhich the ERA5 snow data appear reasonable. All points are above 4000m elevation.
- Orange grid points centred near mountain ridges, above the snow line, that best represent the glaciated regions, but for which the ERA5 snow data do not appear reasonable and have been ignored. All points are above 4000m.
- Blue grid points centred at high elevation below the snow line, and thus providing a wider picture but not indicative of changes to glaciers *per se*. Elevations range from 1906m to 4755m.
- Green grid points centred at lower levels, perhaps agricultural regions, not necessarily directly within the basin itself, but providing a wider picture. The elevation for the single included grid.

ADB G2F Project 1: model projections

Kura Temperature					Naryn Temperature					Pyanj Temperature					
	DJF	MAM	JJA	SON		DJF	MAM	JJA	SON			DJF	MAM	JJA	SON
	SSP 8.5	SSP 8.5	SSP 8.5	SSP 8.5		SSP 8.5	SSP 8.5	SSP 8.5	SSP 8.5			SSP 8.5	SSP 8.5	SSP 8.5	SSP 8.5
>=2ºC	100%	100%	100%	100%	>=2ºC	100%	100%	100%	100%		>=2ºC	100%	100%	100%	100%
>=3ºC	100%	100%	100%	100%	>=3ºC	100%	100%	100%	100%		>=3ºC	100%	100%	100%	100%
>=4ºC	20%	100%	100%	100%	>=4ºC	100%	55%	100%	85%		>=4ºC	100%	100%	100%	100%
>=5ºC	0%	35%	100%	65%	>=5ºC	40%	55%	100%	85%		>=5ºC	90%	65%	85%	85%
Kura Precipitation					Naryn Precipitation					Pyanj Precipitation					
	DJF	MAM	JJA	SON		DJF	MAM	JJA	SON			DJF	MAM	JJA	SON
	SSP 8.5	SSP 8.5	SSP 8.5	SSP 8.5		SSP 8.5	SSP 8.5	SSP 8.5	SSP 8.5			SSP 8.5	SSP 8.5	SSP 8.5	SSP 8.5
Increase of	100%	35%	0%	0%	Increase of 10%	100%	70%	0%	0%		Increase of	80%	35%	15%	25%
10% or more	10070	5570	070	070	or more	10070	7070	070	070		10% or more	0070	5570	1370	2370
Change within	0%	65%	50%	65%	Change within	0%	30%	70%	65%		Change	0%	35%	60%	60%
±5%	070	0370	5070	0370	±5%	070	5070	7070	0370		within ±5%	070	5570	0070	0070
Decrease of 10% or more	0%	0%	50%	35%	Decrease of 10% or more	0%	0%	30%	35%		Decrease of 10% or more	20%	30%	25%	15%

Precipitation		KURA					NARYN					Pyanj		
1.7					1.7					1.7				
1.6					1.6					1.6				
1.5					1.5					1.5				
1.4					1.4					1.4				
1.3					1.3					1.3				
1.2					1.2					1.2				
1.1					1.1					1.1				
1					1					1				
0.9					0.9					0.9				
0.8					0.8					0.8				
0.7					0.7					0.7				
0.6					0.6					0.6				
0.5					0.5					0.5				
	DJF	MAM	JJA	SOM		DJF	MAM	JJA	SOM		DJF	MAM	JJA	SOM
Temperature		KURA					NARYN					Pyanj		
7					7					7				
6.5					6.5					6.5				
6					6					6				
5.5					5.5					5.5				
5					5					5				
4.5					4.5					4.5				
4					4					4				
3.5					3.5					3.5				
3					3					3				
2.5					2.5					2.5				
2					2					2				
1.5					1.5					1.5				
1					1					1				
	DJF	MAM	JJA	SOM		DJF	MAM	JJA	SOM		DJF	MAM	JJA	SOM

ADB G2F Project 2: SOMs



ADB G2F Project 3:

Climate Risk Assessment

Hazard (Climatic)	Hazard (Glacial)	Kura current	Kura Future	Residual Risk	
		Very Low	Very Low	Very low	
		Very Low	Very Low	Very Low	
	Glacier retreat	Very Low	Low	Very low	
		Very Low	Low	Low	
		Moderate	Moderate	Very low	
Increase in temperature (long term trend)	Melting permafrost	No Risk	No Risk	No Risk	
		Extreme	Extreme	High	
	Shorter snow season duration	Moderate	Moderate	Low	
	Melting of rock glaciers and acceleration of creep	No Risk	No Risk	No Risk	
	Decline in precipitation: Negative glacier mass balance, retreat of glaceirs	Low	Low	Low	
Change in accumulation seasons percipitation	Increase or positive anomalies in precipitation: Oversaturation of soils and substrates	Extreme	Extreme	High	
	Decline or negative anomalies in precipitation: reduced accumulation of seasonal snow	Extreme	Extreme	Moderate	
Extreme snowfall	Complex interactions with other	High	High	High	
Extreme showidu	meteorological variables	High	High	Moderate	
Change in melt season	Reduced reflectance of glaciers leading to faster melting	Low	Low	Low	
precipitation	Negative anomalies / drought	Extreme	Extreme	Extreme	
	Positive anomalies in precipitation	High	High	Moderate	
Change in ratio of snow and	Reduced snow accumulation	High	High	Moderate	
rain	More frequent 'rain on snow' events	Extreme	Extreme	High	
	Rapid degradation of glaciers	Extreme	Extreme	Moderate	
Heatwaves	Degradation of permafrost	No Risk	No Risk	No Risk	
	Rapid snow melt	Extreme	Extreme	High	
	Rapid degradation of glaciers	Moderate	Moderate	High	
Droughts	Long-term impact on permafrost	No Risk	No Risk	No Risk	
	Insufficient water supply	Extreme	Extreme	Moderat+L11:L29e	

The Future?



- Increasing abundance and area of glacial lakes especially in Central and High Mountain Asia
 - Over 4,500 glacial lakes in Tien Shan, covering a combined area of 205.73 ± 0.17 km² in 2023 (Chen et al., 2024)
 - Tajikistan (Pamir and Hissar-Alay): ~3330 lakes with individual area >200 m² located within 10 km distance from glacier tongues with a combined area of 130.59 km²

Potential increase in frequency of GLOF

- Frequency of GLOF peaked in the 1970s-1980s
- No increase in GLOF frequency to date
- Increase in frequency of GLOF in the future is
- Increase in intensity of precipitation and frequency of share of rain in total precipitation
 - Flash floods, landslides and debris flows caused by intense rainfall
 - Upwards extension of the debris flow formation zone in the Tien Shan
 - Increasing frequency of pluvial debris flows in Uzbekistan
- Snow avalanches

Another possible Future?

Major ice loss

pathway

(a)

(b)

Ice glacier

Thank you Stephan Harrison: <u>stephan.harrison@ccrm.co.uk</u> <u>stephan.harrison@exeter.ac.uk</u>