

Mitsubishi Heavy Industries, Ltd.

Mitsubishi Heavy Industries Group at a Glance

1884 Foundation over 130 years history

77,283 Employees (Consolidated)

254 Group Companies (Consolidated)

¥4.2_{TN} (**\$31.1**_{BN*}) Revenue (FY2022, consolidated)

Diverse **products**On land, at sea, in the sky, in space

Note: The U.S. dollar revenue figure was converted from Japanese yen using the FY2022 average exchange rate, JPY 134.9/USD.

Three Pillars to realize "Mission Net Zero"

2. Realizing a Decarbonize existing infrastructure and Hydrogen Solutions Ecosystem

CO2 Zero power generation technology Roadmap

Reduce CO₂ by High Efficiency Gas Turbine → ZERO CO₂ by Hydrogen Gas Turbine

Timeline of Development for Hydrogen/ Ammonia Power Generation System 🚣 MILTRIBUSTRIES

Validate and begin commercializing carbon-free power generation using hydrogen and ammonia by 2025

© MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.

Takasago Hydrogen Park

■ Integrated validation of hydrogen production, storage, and utilization began at Takasago Machinery Works in 2023

Nagasaki Carbon Neutral Park

© Mitsubishi Heavy Industries, Ltd. All Rights Reserved.

Status of Hydrogen Production Technology Development

Turquoise Hydrogen

- Produce hydrogen by methane pyrolysis with catalyst. Recover carbon as a solid.
- Low-cost supply of carbon-free H₂ at scale utilizing existing LNG infrastructure

SOEC

- SOEC (Solid Oxide Electrolysis Cell) produces hydrogen using steam and electricity
- Able to apply cell technology by reversing SOFC (Solid Oxide Fuel Cell) reaction

- Planning to start validation of MHI-developed SOEC during FY2023
- Executing development and validation aiming for commercialization in FY2026 or thereafter

© Mitsubishi Heavy Industries, Ltd. All Rights Reserved.

MHI has variety of products that contribute to the establishment of Hydrogen / Ammonia Value Chain.

MHI H2/NH3 power generation projects

Hydrogen related projects **Zero Carbon Humber (H2H Saltend)** Magnum Ammonia related projects M701F. 1.200MW (3 CCGT) M701F, 440MW (1 CCGT out of 3 CCGT) Hull. Humber. UK (after 2026) Eemshaven, the Netherlands (TBD) Linkou Steam Power Plant NH₃ co-firing, 800MW×3units, McDonough New Taipei, Taiwan (FS) M501G, 2.520MW (3 CCGT) Smyrna, Georgia, USA Intermountain Power 20vol% hydrogen co-firing **BLCP Steam Power Plant** M501JAC, 840MW (2 CCGT) validated (in 2022) NH₃ co-firing, 700MW×2units, Delta, Utah, USA Map Ta Phut, Thailand (FS) **Meranti Power** (30vol% H₂ firing in 2025, 100% firing in 2045) M701F, 340 MW x 2 (in 2025) **Keppel Infrastructure** M701JAC, 600 MW (in 2026) **Advanced Clean Energy Storage Sembcorp Industries** Green Hydrogen Production and Storage **Energy Decarbonization** M701JAC, 600 MW (in 2026) Delta, Utah, USA (in 2025) Decarbonizing Entergy' utilities Texas, USA **ADNOC Keppel Data Center** M501JAC (2 CCGT) (in 2026) MOU for Blue Hydrogen, CCGT Singapore (TBD) Ammonia and CCS Port of Newcastle **EMA/ MPA** Under discussion to establish H2 Ammonia bunkering & power HUB and clean energy economy generation **Keramasan CCGT Project Guacolda Steam Power Plant** H-25, 80MW (2 CCGT), South Sumatra, Indonesia (FS)

Suralava Steam Power Plant

NH₃ co-firing, 600MW×3units,

Cilegon, Indonesia (FS)

NH₃ co-firing, 150MW×5units, Atacama, Chile (FS)

3. Realizing a CO₂ Solutions Ecosystem

Capture, Transport, Utilization.. Entire CCUS Value Chain Solution

High-Efficiency GTCC + CO₂ Capture

■ By applying a CO₂ capture system to a GTCC plant, it is possible to capture over 90% of CO₂

- Awarded Front End Engineering Design (FEED) contract for CO₂ capture plant to be applied to a natural gas-fired GTCC power generation facility in Alberta, Canada
- Supporting customers' decarbonization efforts with both GTCC and CO₂ capture systems

- Awarded FEED contract for GTCC power generation facility and CO₂ capture plant in Scotland
- Supporting commercial-scale CCS implementation, contributing to UK's achievement of Net Zero by 2050

https://www.mhi.com/news/22083001.html

Building a CCUS Ecosystem – Global initiative in CO2 Capture

MHI's experienced global KM CDR Process[™] team stands ready to meet customer requirements for commercial CO₂ capture plants on various exhaust from conceptual design through detailed engineering and project delivery.

Worldwide Commercial Experience of CO2 capture plant

Petra Nova Project

The World's Largest Post-Combustion Carbon Capture Plant

EPC full turnkey project

- MHI has provided the world's largest carbon capture plant on coalfired flue gas delivered in December 2016 for Petra Nova Project
- Supported by DOE (U.S. Department of Energy) grant program (CCPI* Round 3) and Japanese government finance (JBIC / NEXI)

Project Formation	Consortium of MHI / Kiewit / The Industrial Company (TIC) MHI: Engineering and Procurement for Carbon Capture Plant Kiewit: Utility and balance of plant TIC: Construction
Plant location	NRG WA Parish Power Plant (Thompsons, TX)
Project owner	Petra Nova - partnership between NRG Energy and JX Nippon Oil&Gas Since 2022, full ownership under JX Nippon Oil&Gas
Plant scale	240 MW _{eq}
CO2 capacity	4,776 Mt/d (1.4 MMt/y)

Carbon Capture Plant

Source: Press Release by MHI

^{*}Clean Coal Power Initiative

^{*}U.S. Department of Energy "W.A. Parish Post-Combustion CO₂ Capture and Sequestration Project Final Environmental Impact Statement Volume I" (Feb, 2013), DOE/EIS-0473

