PARTICULATE MATTER AIR POLLUTION IN CENTRAL ASIA: A CASE STUDY OF BISHKEK, KYRGYZSTAN

This is not an ADB material. The views expressed in this document are the views of the author/s and/or their organizations and do not necessarily reflect the views or policies of the Asian Development Bank, or its Board of Governors, or the governments they represent. ADB does not guarantee the accuracy and/or completeness of the material's contents, and accepts no responsibility for any direct or indirect consequence of their use or reliance, whether wholly or partially. Please feel free to contact the authors directly should you have queries.

Jay R. Turner

Professor of Energy, Environmental & Chemical Engineering James McKelvey Professor of Engineering Education Vice Dean for Education, McKelvey School of Engineering Washington University in St. Louis / USA

Rufus Edwards Professor of Professor, Epidemiology and Biostatistics University of California, Irvine/USA

2021 population exposures to outdoor fine particulate matter ($PM_{2.5}$)

Hybrid Model with All Sources

IT-x = WHO Interim Targets (Air Quality Guideline = $5 \mu g/m^3$)

Jay Turner, Washington University in St. Louis, USA methodology from van Donkelaar *et al.* (2021) data from https://sites.wustl.edu/acag/ (accessed 09 Nov 2023)

Annual Average PM_{2.5} (2018)

Hybrid Model with All Sources

map created by Jay Turner, data from Hammer et al. 2020

IT-x = WHO Interim Targets (Air Quality Guideline = $5 \mu g/m^3$)

Bishkek, Kyrgyzstan (pop. ~1 million)

ADI

Bishkek Wintertime PM_{2.5}, like many Central Asian cities, is a mostly local problem

Bishkek

Ala Archa National Park, 30km from Bishkek city center 20km from the peri-urban extent

UNICEF Project Acknowledgements

Project Team

- M-Vector
 - especially Aida Beishekeeva, Nail Khaibulin
- Rahat Sabyrbekov, American University of Central Asia
- Ajay Pillarisetti, University of California, Berkeley
- UNICEF Kyrgyzstan staff
 - especially Nazgul Sharshenova, Tomoya Sonoda

Outdoor Air Quality Data

- Asian Development Bank
 - Jules Hugot, Kristian Rosbach
- KyrgyzHydromet
 - Begaim Alipova, Lyudmila Nyshanbaeva
- Clarity Movement Co.
 - Levi Stanton, Sean Wihera

Published April 2023...

HEALTH AND SOCIAL IMPACTS OF AIR POLLUTION ON WOMEN AND CHILDREN IN BISHKEK, KYRGYZSTAN

ENTRY-POINTS FOR ACTION

Objectives and Approach

- Examine the health and social impacts of fine particulate matter (PM_{2.5}) air pollution on children and women in Bishkek
- Assess entry points for action to reduce air pollution exposures

Our July 2021-June 2022 Study Period was Relatively Less Polluted

This propagates through to the health and economic impact results

PM_{2.5} 12-month average ("annual"), July 2021-June 2022

Clarity Movement Co.

~400% difference in outdoor concentrations across Bishkek

Where you live/work/play matters!

for every child

unicef

average monthly income (som)

... and Coal Stove use broadly distributed across all income brackets

primary energy source for residential space heating

Low

(<5000 som)

High

(>80,000 som)

PM_{2.5} Outdoor Concentrations Strongly Correlated with Residential Coal Use

(July 2021-June 2022; same pattern using winter average PM_{2.5})

Distribution of Outdoor PM_{2.5} at Residences

unicef

for every child

Population mean concentration does not well represent this broad distribution of concentrations

Using 2019 population data...

- 20% of population < 25 μg/m³ (IT-2)
- 50% of population > 40 μ g/m³ (>IT-1)
- 10% of population > 60 μg/m³ (>>IT-1)

But people spend most of their time indoors...

outdoor $PM_{2.5}$ concentrations, $PM_{2.5}$ indoor/outdoor ratios, and time-activity data \rightarrow exposures

for every child

Household Indoor/Outdoor (I/O) PM_{2.5} Ratios

TOTAL

I/O ratio ~0.5 across all heating types...

Consistent with infiltration of neighborhood-scale outdoor PM

Health Outcomes Estimates – Bishkek, July 2021 to June 2022

- Annual health impacts from PM_{2.5} exposure were estimated to cause:
 - 112 Deaths (95% CI 97-131)
 - loss of 3,568 Disability Adjusted Life Years (DALYs) (95% CI 2,990-4,220)
- 2021-2022 estimated welfare loss from PM_{2.5} air pollution:
 - 24.9 million USD (95% CI 20.8-29.4)

Project report and three policy briefs available on the UNICEF Kyrgyzstan website

Residential Heating Interventions Options

Better temperature control of buildings on district central heating

Expand natural gas distribution network

HEAT PUMPS

air-to-air heat pump (commercial building)

for every child

Summary I: Bishkek PM_{2.5} Air Quality

- Moderately dense low-cost sensor (LCS) network (~5km²/LCS)
 - Identified high PM_{2.5} spatial variability (factor of four) across Bishkek
 - Enabled PM_{2.5} exposure estimation at 1km² resolution
 - Determined influence of mountain-valley airflow on PM_{2.5} (not shown)
- PM_{2.5} network and household survey
 - Highlighted residential coal stoves as the dominant source of wintertime PM_{2.5}
- Simultaneous Indoor/Outdoor Monitoring
 - Generated relationships needed for PM_{2.5} exposure modeling
 - Identified indoor PM_{2.5} dominated by infiltration of ambient air
 - Emissions directly to the indoor air are low for vented, properly functioning stoves
 - "It is your stove and your neighbor's stoves" leading to indoor exposures

Summary II: Bishkek PM_{2.5} Air Quality

- Large differences in PM_{2.5} exposures across the city
- Residential stoves drive high neighborhood-scale outdoor air pollution
- Interventions to reduce PM_{2.5} emissions must be at the neighborhood or larger scale to reduce household-level exposures
- Absent (or in addition to) emissions reductions, there are household-level actions to reduce PM_{2.5}
 exposures (e.g., air purifiers)

unicef 🥴

for every child

For more information, contact Jay Turner, JRTURNER@WUSTL.EDU

unice

for every child

