

Nature and Climate Nexus: Promoting Nature-based Solutions (NbS) for Sustainable Infrastructures in Asia and the Pacific

Challenges and Approaches in Quantifying NbS Benefit Streams

24 October 2022 (Monday) • 2-3 pm (Philippines/GMT+8) • Zoom

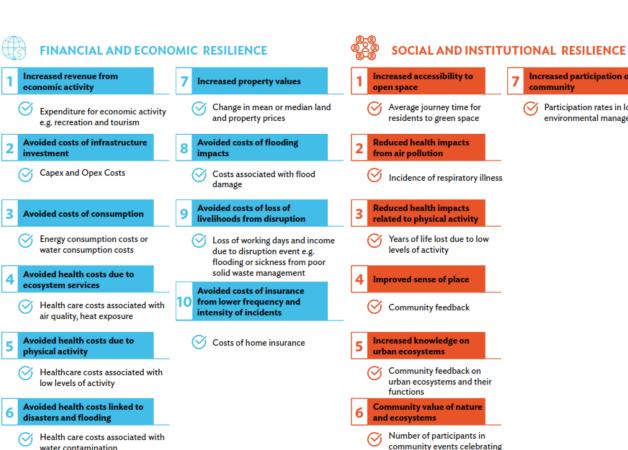
This is not an ADB material. The views expressed in this document are the views of the author/s and/or their organizations and do not necessarily reflect the views or policies of the Asian Development Bank, or its Board of Governors, or the governments they represent. ADB does not guarantee the accuracy and/or completeness of the material's contents, and accepts no responsibility for any direct or indirect consequence of their use or reliance, whether wholly or partially. Please feel free to contact the authors directly should you have queries.

Challenges in Measuring NbS Benefits

- **Breadth of potential benefits:** Benefits of NbS are wide ranging, and there is potential for a large range of metrics to be applied drawn from different thematic areas
- Challenges in data collection: Quantification of potential benefits across all metrics may not be immediately available, and requires planning for data collection input from early stages of project development
- **Timescales for benefit delivery:** Many co-benefits are slow to accrue. Longer time-scales make it difficult to model returns for investments and compare future benefits against current costs. Discount rates can be important
- Lack of familiarity among policy makers: Often, the process of identifying co-benefits is unfamiliar to partners and clients and they require some support in understanding business case
- **Boundary issues:** Impacts of NbS can go beyond administrative boundaries. Capturing and accounting for these benefits may be beyond the jurisdiction of implementing agencies (e.g., downstream effects)
- Indicators and methodologies do exist however, and are well established (if under used)...just need more coherent frameworks...

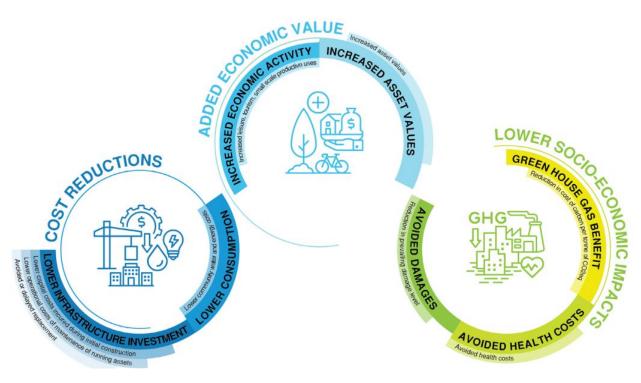
Types of Benefit Streams

Increased participation of


Participation rates in local

environmental management

Oppth of groundwater



local nature

water contamination

Key Economic Benefits

How can NbS be framed in economic terms?

Subsets of benefit streams can build financial/economic case

Cost reductions

- Lower capital costs during construction
- Lower infrastructure operational and maintenance costs
- Avoided or delayed infrastructure replacement costs
- Lower community water or energy costs
- Adjusted insurance costs

Lower Socio-economic impacts

- Avoided \$ damages of natural events (e.g., flood)
- Avoided health costs (e.g., reduced DALYs)
- GHG benefits (e.g., stored carbon)

Added economic value

- Increased asset values (e.g., property, amenity)
- Tourism, small scale productive uses, commercial amenity

Methodologies exist to capture and calculate benefits

Case Study 1: New Clark City (Philippines)

Avoided costs of infrastructure investment and operation costs		
Reduced costs of embankment and works to direct river and control flow	Reduced costs of construction by leaving river in existing channel	3.4 million
Reduced costs of bridge construction (Infrastructure crossing)	Reduction in cost of 6 bridges (\$5 million/ bridge): Shift bridge to shorten span	30 million
		O 2 million
Avoided pond cost (transfer to flood plain)	Data not available	
Low natural and landscape boundary costs, minimal grading	Reduced grading due to shift in retention pond Expansion of river zone	15 million 5 million

Master planning exercise for New Clark City (Philippines)

- 9450 ha, 1.2m inhabitants
- Increasing the river zone of Cut-Cut River by following natural topography
- Reducing works to direct river, avoiding grey infrastructure and embankments
- Providing floodplains with open green spaces and retention ponds
- Enhancing linkages with ecological structures

Benefit streams

Cost reductions

- Quantified benefits primarily in cost reductions
- NbS delivered \$50m reduction on \$350m investment. 15%
- Reduced need for grey infrastructure (bridges, river embankment works)
- Fewer earth works by adopting the natural flow of the river for retention ponds

Lower socio-economic impacts

- Avoided downstream flooding
- Avoided health costs (recreation, non-modal transit, heat island effects)
- Reductions in GHG emissions

Added economic value

- Green branding (e.g., hosting of Southeast Asian Games)
- Recreational revenues (fishing, sports, small-scale agriculture)
- Property values along river corridor
 - Note some offset against development benefits of grey infrastructure

INTERNAL. This information is being disclosed to the public in accordance with ADB's Access to Information Policy.

INTERNAL. This information is accessible to ADB Management and staff. It may be shared outside ADB with appropriate permission.

Case Study 2: Revitalization of Informal Settlements and their Environments (RISE) - Indonesia

ECONOMIC BENEFITS	ECONOMIC VALUE ESTIMATES	\$
Avoided costs of infrastructure investment and operation costs		
Avoided grey infrastructure costs	Avoided costs of water drainage and storage infrastructure	Data not availab
Reduction in annual road maintenance cost	Estimated at Net Present Value (NPV) \$90,000 for 21 km	90,000
Avoided energy and water consumption costs		
Savings in water costs	Water savings per household (\$112/year)	1.83 million
Increased NbS related economic activity		
Improved micro-economies and urban farming	Production value	Data not availab
Lower loss of earnings in flood	Reduced loss of earnings per household (\$143/ year)	0 650,000
Time savings on waste disposal	Time savings per housholde (\$39/year)	180,000
Increased property or other asset values		
Rising land values	Increase in value of assets	Data not availab
Avoided infrastructure damages		
Reduced infrastructure damage	Reduced infrastructure damage per household (\$29/year)	130,000
Avoided health impact costs		
Reduced loss of earnings	Reduction in DALYs (valued at per capita GDP income at \$57/household/year)	1 260,000
Savings in medical costs	Reduction in DALYs (valued at per capita GDP income at \$94/household/year)	1.54 million
Avoided GHG emissions		
Avoided captured GHG	Avoided, captured GHG value (\$/TCO2eq.)	Data not availab

NbS in Informal Settlements - RISE (Makassar, Indonesia)

- Community scale NbS interventions
- Improved water supply through rainwater harvesting and recycling, improved sanitation through newly-installed septic tanks, biofilter gardens wastewater treatment, improved drainage, and flood and tidal inundation management (e.g., wetlands), resilient access roads and utility corridors along with community capacity development for long-term operations, maintenance and system replication.
- EIRR of 17.5% indicating strong economic returns

Cost savings

- Savings in water costs
- Reduction in road maintenance costs
- Avoided grey infrastructure costs

Lower socio-economic impacts

- Avoided flood infrastructure damages
- Avoided livelihoods losses
- Avoided health costs (e.g., faecal contamination, vector habitats)

Added economic value

- Green branding
- Productivity and NbS economic activity (micro-farming)
- Increasing property and land values

THANK YOU!

UCCRTF Financing Partners:

UCCRTF TA 9217 Consultant:

