

#### **TRAINING ON**

# **Bioengineering Nature-based Solutions for Linear Infrastructure Slope Stabilization and Protection**

1, 2 and 4 August 2022

Bangladesh via Zoom

This is not an ADB material. The views expressed in this document are the views of the author/s and/or their organizations and do not necessarily reflect the views or policies of the Asian Development Bank, or its Board of Governors, or the governments they represent. ADB does not guarantee the accuracy and/or completeness of the material's contents and accepts no responsibility for any direct or indirect consequence of their use or reliance, whether wholly or partially. Please feel free to contact the author/s should you have queries.

#### Source of Material

This training programme was compiled and delivered by Shankar Rai, working with assistance from Shuva Sharma, Dr. Mohammed Shariful Islam and Syed Abdur Rahim. Ouality assurance was provided by John Howell.

This was prepared as part of the Asian Development Bank's TA 9461 REG - Protecting and Investing in Natural Capital in Asia and the Pacific, which was implemented by a team led by Isao Endo and Victor Tumilba

#### This material may be cited as:

Rai, Shankar. "Bioengineering Nature-based Solutions for Linear Infrastructure Slope Stabilization and Protection." Training Lecture. Asian Development Bank (ADB), August 1-4, 2022. <u>Bioengineering Nature-based Solutions for Linear Infrastructure Slope Stabilization and Protection</u> <u>ADB Knowledge Event Repository (development.asia)</u>.

# Session-01

Introduction to the Training

Self-introduction

- Trainers
- Participants

# Training Content and Timetable

| Day/Time<br>(Bangladesh time) | Modules                                                                                               | Technical Content                                                                     |  |  |
|-------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|--|
|                               |                                                                                                       |                                                                                       |  |  |
| I August 2022                 | DAY 1: Introduction to bioengineering training course                                                 |                                                                                       |  |  |
| 10:05 a.m12:00 p.m.           | Module 1: Slope<br>instability, failure and<br>protection measures                                    | Introduction to the training course                                                   |  |  |
|                               |                                                                                                       | Type of slope instability and components of an unstable slope                         |  |  |
|                               |                                                                                                       | Causes and mechanisms of slope failure                                                |  |  |
|                               |                                                                                                       | Slope protection practice and bioengineering                                          |  |  |
| 12:00 p.m1:00 p.m.            | Module 2: Introduction<br>to bioengineering and<br>designing structures<br>with nature                | Engineering design and functions in bioengineering systems                            |  |  |
|                               |                                                                                                       | Bioengineering structures and their design                                            |  |  |
|                               |                                                                                                       | Site assessment and selection of bioengineering techniques                            |  |  |
|                               |                                                                                                       | Selection of plant species for bioengineering                                         |  |  |
| 1:00 p.m2:00 p.m.             | Health Break                                                                                          |                                                                                       |  |  |
| 2:00 p.m 2:50 p.m.            | Module 3: Programming<br>bioengineering works,<br>rate analysis norms, and<br>standard specifications | Bioengineering works for slope protection                                             |  |  |
|                               |                                                                                                       | Bioengineering maintenance task and seasonal work programming of bioengineering works |  |  |
|                               |                                                                                                       | Rate analysis norms and standard specifications for bioengineering works              |  |  |
| 2:50 p.m3:00 p.m.             | Open Discussion and Announcements                                                                     |                                                                                       |  |  |

#### Training Content and Timetable

| Day/Time<br>(Bangladesh time) | Modules                                                                        | Technical Content                                   |  |
|-------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------|--|
|                               |                                                                                |                                                     |  |
| 2 August 2022                 | DAY 2: Bioengineering nursery construction and collection of materials         |                                                     |  |
| 10:00 a.m10:05 a.m.           | Recap of Day I Training Session                                                |                                                     |  |
| 10:05 а.т12:00 р.т.           | Module 4: Bioengineering<br>nursery site selection,<br>design and construction | Siting bioengineering nursery                       |  |
|                               |                                                                                | Nursery components and size                         |  |
|                               |                                                                                | Nursery layout, design and nursery bed construction |  |
|                               | Module 5: Collection of seed and vegetative plant materials                    | Seed collection and storage                         |  |
| 12:00 p.m1:00 p.m.            |                                                                                | Collection of vegetative plant materials            |  |
| I:00 p.m2:00 p.m.             | Health Break                                                                   |                                                     |  |
| 2:00 p.m3:00 p.m.             | Open Discussion and Announcements                                              |                                                     |  |

#### Training Content and Timetable

| Day/Time<br>(Bangladesh time) | Modules                                                           | Technical Content                                                                      |  |
|-------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|
| 4 August 2022                 | DAY 3: Bioengineering nursery operations and bioengineering works |                                                                                        |  |
| 10:00 a.m10:05 a.m.           | Recap of Day 2 Training Session                                   |                                                                                        |  |
| 10:05 a.m12:00 p.m.           | Module 6: Bioengineering<br>nursery operations                    | Compost production and filling polypots                                                |  |
|                               |                                                                   | Seed sowing and planting cuttings in nursery                                           |  |
|                               |                                                                   | Care of young plant in nursery                                                         |  |
|                               |                                                                   | Hardening, lifting and transporting to site                                            |  |
|                               |                                                                   | Scheduling nursery work and record keeping                                             |  |
| 12: 00 p.m1:00 p.m.           | Module 7: Site preparations<br>and bioengineering works           | Site preparation and spoil disposal                                                    |  |
|                               |                                                                   | Construction of vegetative structures                                                  |  |
|                               |                                                                   | Practical application of bioengineering works                                          |  |
|                               |                                                                   | Application of rate analysis norms and standard specification for bioengineering works |  |
| I: 00 p.m2:00 p.m.            | Health Break                                                      |                                                                                        |  |
| 2: 00 p.m2:50 p.m.            | Open Discussion and Training Course Evaluation                    |                                                                                        |  |
| 2: 50 p.m3:00 p.m.            | CLOSING SESSION: ADB                                              |                                                                                        |  |

# Session-02

# Type of Slope Instability and Components of an Unstable Slope





© Shankar Rai





© Shankar Rai

O Shankar Rai











Copyright: Shankar Rai







# Impacts



#### Disconnects transport/traffic





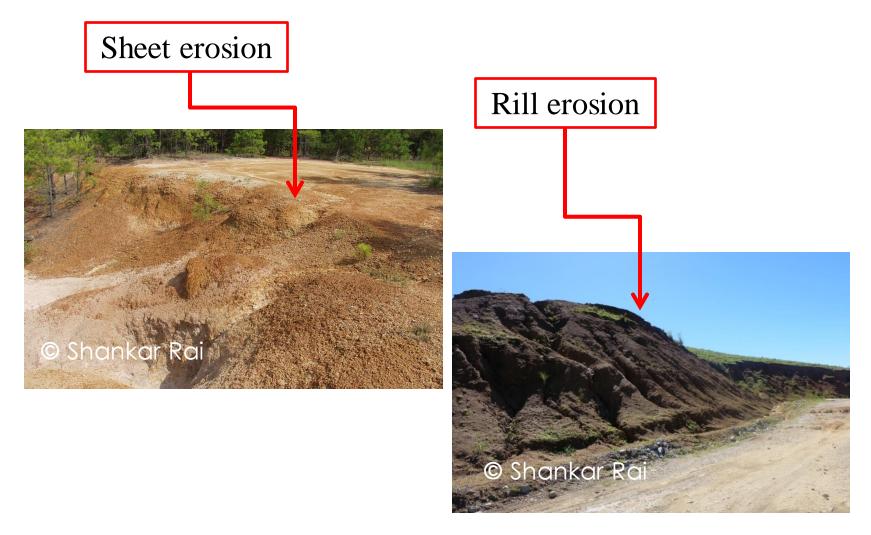
Copyright: Shankar Rai

#### Loss of Assets



Copyright: Shankar Rai

#### Sedimentation and Loss of Assets

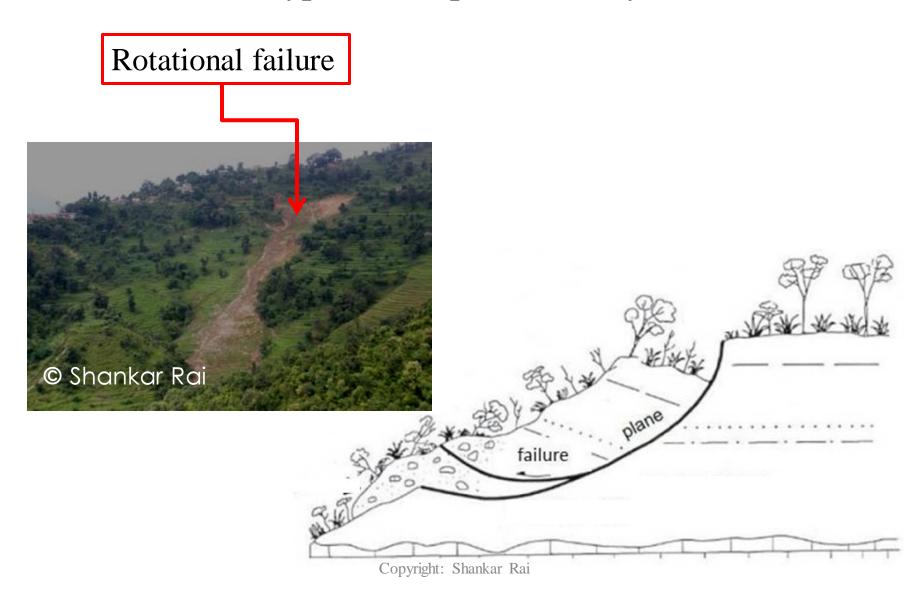


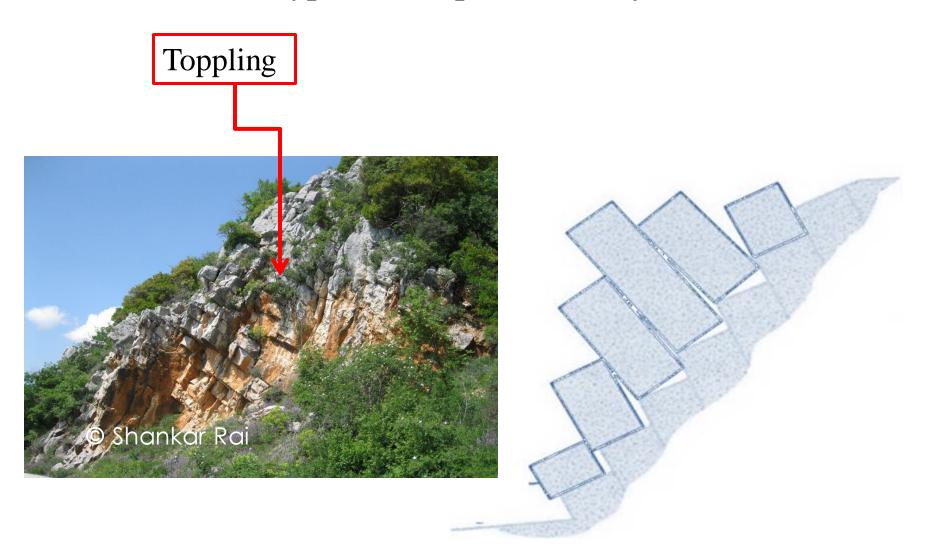




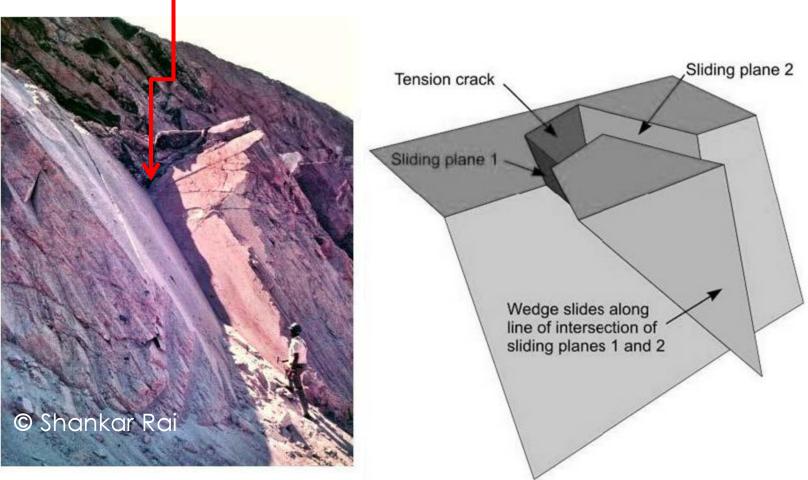


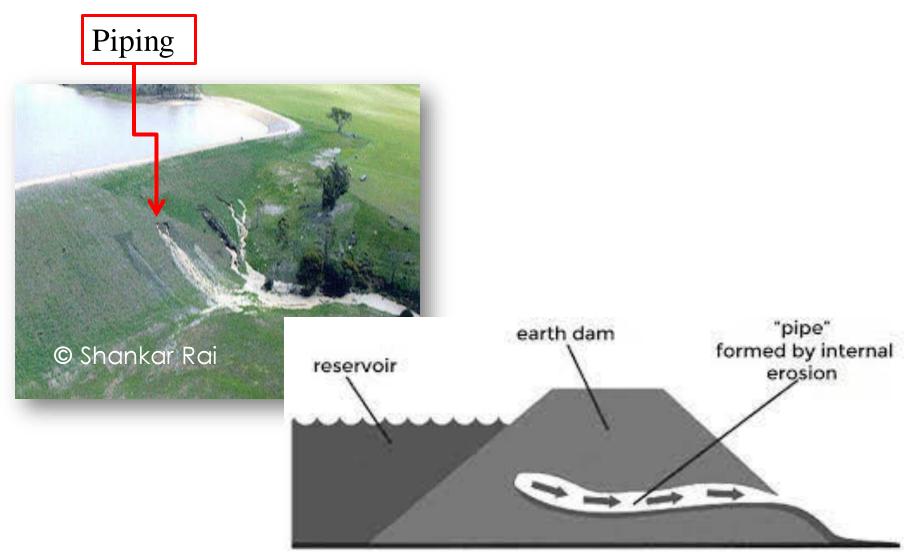

- Erosion
  - Sheet erosion
  - Rill erosion
  - Gully erosion
- Rotational slide
- Translational slide
- Plane failure
- Toppling
- Wedge / block failure
- Piping





#### Gully erosion

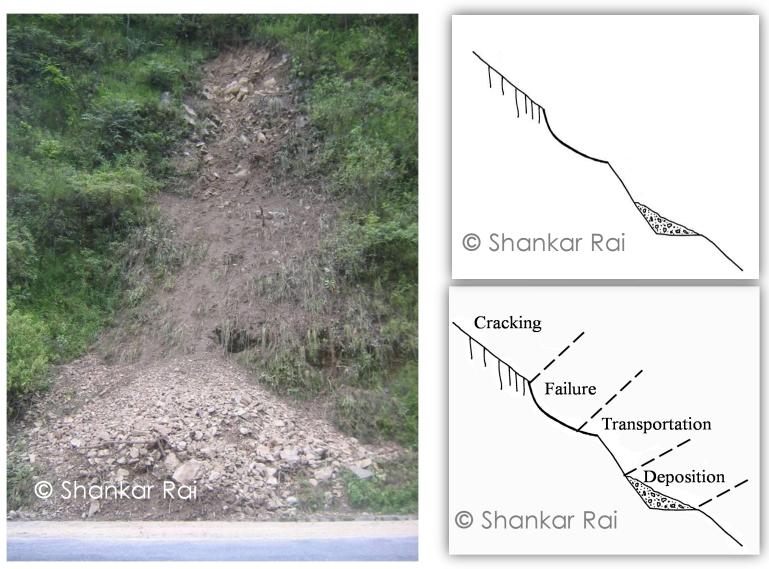




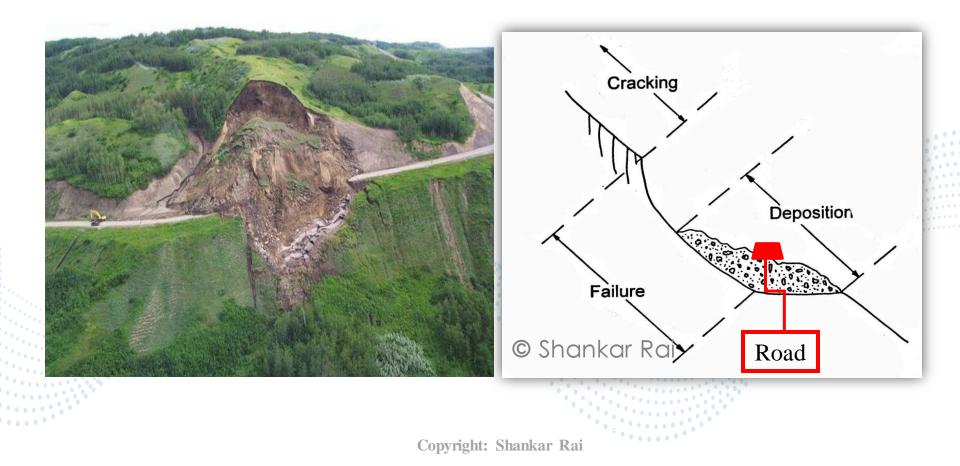


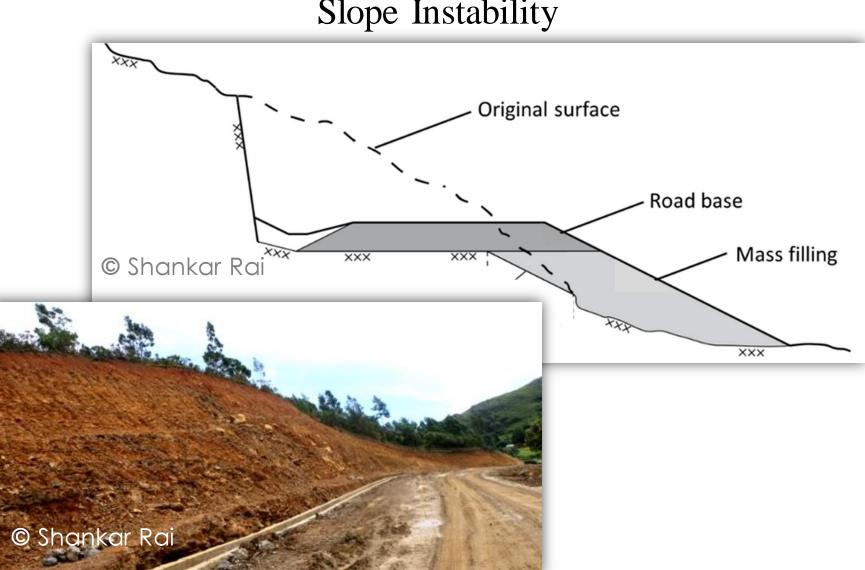




#### Wedge/block failure



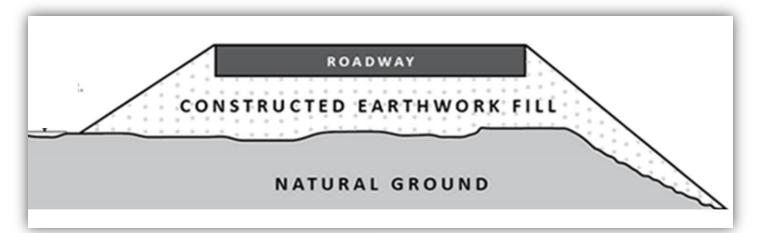



Copyright: Shankar Rai


# Components of an Unstable Slope



Copyright: Shankar Rai


#### Components of an Unstable Slope





Slope Instability

#### Man-made Slope Instability

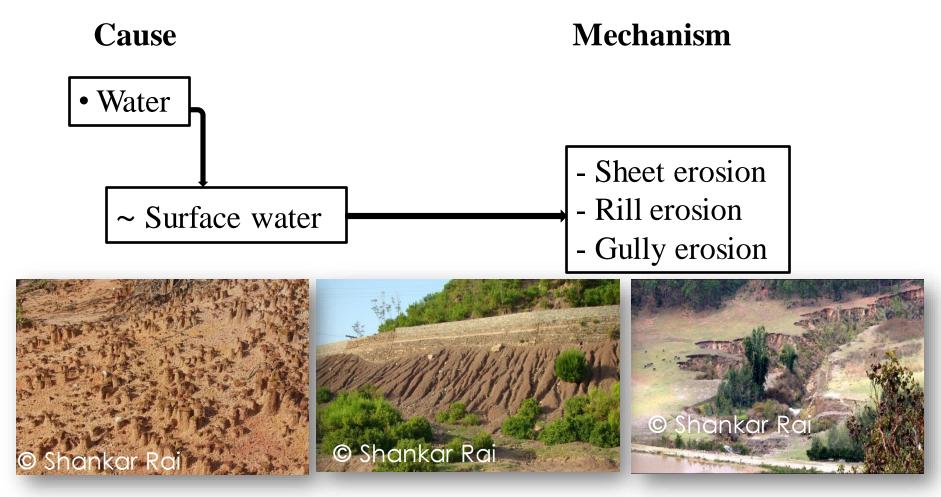


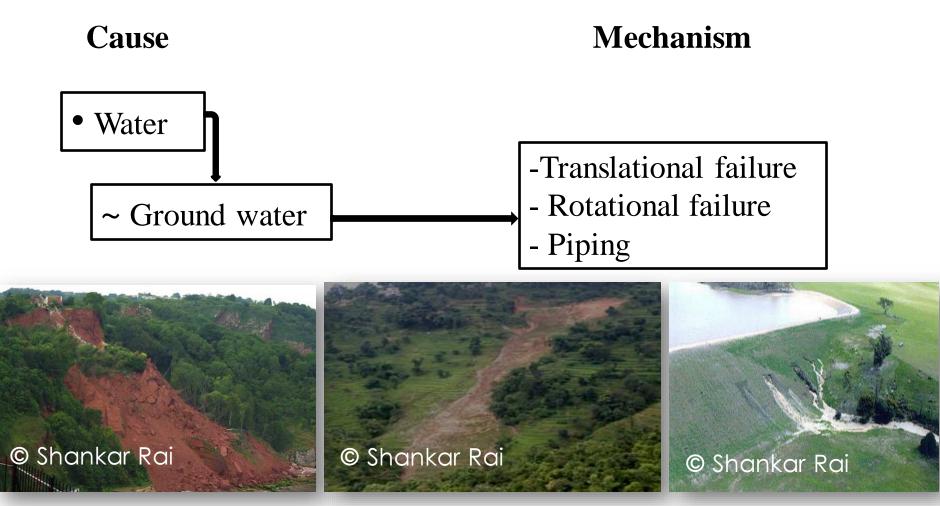


#### Session-03

#### Causes and Mechanisms of Slope Failure

Cause of failure :


The condition that generates or triggers or starts failure.


Mechanism of failure :

The manner in which loss of strength occurs in the slope.

# Causes of slope failure

- Water
  - Surface water
  - Ground water/Sub-surface water
- Undercutting of slope
- Weathering
- Additional load





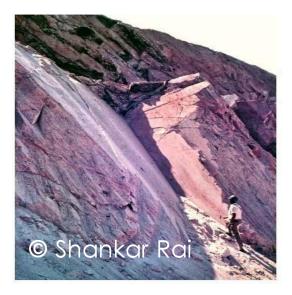
Cause

#### Mechanism

• Undercutting

Translational failureRotational failurePlane failure




#### Cause

#### Mechanism

• Weathering



-Toppling -Wedge/Block failure



#### Cause

#### Mechanism

• Additional load

Translational failureRotational failurePlane failure



#### Triggering factors of slope instability

- Human Activities
  - Undermining slopes
  - Tipping of spoil on slopes
  - Collapse of retaining structures
  - Sudden water discharge
  - Fire removing vegetation
  - Changed land use

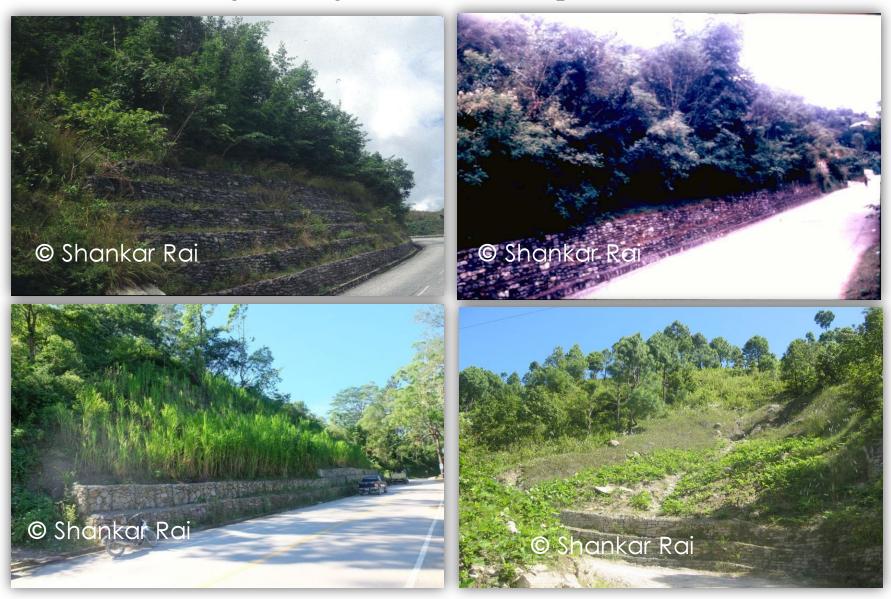
### Triggering factors of slope instability

- Natural events
  - Heavy rain
  - River floods (usually undercutting slopes)
  - Earthquakes

### Session-4 Slope Protection Practices

#### Conventional engineering practices for slope protection work








#### Conventional engineering practices for slope protection work



#### Bio-engineering methods for slope stabilization



#### Bio-engineering methods for slope stabilization



### What is bio-engineering

Bio-engineering is the use of living plants for engineering purposes, either alone or in conjunction with the civil engineering structures and non-living plant material, to reduce shallow-seated instability and erosion on slopes.

## What does bio-engineering do?

• Bio-engineering protects almost all slopes against erosion;



## What does bio-engineering do?

- Bio-engineering reduces the instances of shallow planer sliding;
- Bio-engineering improves surface drainage;
- Bio-engineering reduces slumping (saturated slope failures).

# Why bio-engineering?

- Bio-engineering systems work in the same way as civil engineering systems and have the same functions and
- Reducing instability and erosion (*curing* problems)
- Increasing the slope's factor of safety
   (*preventing* problems)

## Why bio-engineering?

- Climate resilience and Nature-based Solution for slope protection and erosion control work;
- Cost-effectiveness;
- Socially advantageous;
- Versatility in application;
- Environmentally advantageous.



• to stop material falling or sliding down a slope:

### Catch

• to protect surfaces from erosion:

### Armour

• to hold particles together and reduce risk of shallow-seated movement:

### Reinforce



• to reduce the risk of deeper-seated movement:

### Anchor

- to hold material on slope:
   Support
- to remove excess water:

### Drain



Design aspects of civil engineering structures Engineering functions of civil engineering structures

- 1. Catch
- 2. Armour
- 3. Reinforce
- 4. Anchor
- 5. Support
- 6. Drain

Engineering functions of civil engineering structures?

| Civil engineering structure      | Engineering function |  |
|----------------------------------|----------------------|--|
| Check dam                        | Catch                |  |
| Revetment wall, stone pitching   | Armour               |  |
| Earth reinforcement/soil nailing | Reinforce            |  |
| Rock bolting                     | Anchor               |  |
| Retaining wall                   | Support              |  |
| Lined ditch/French drain         | Drain                |  |

#### Small scale civil engineering structures.



#### Coir/Jute netting

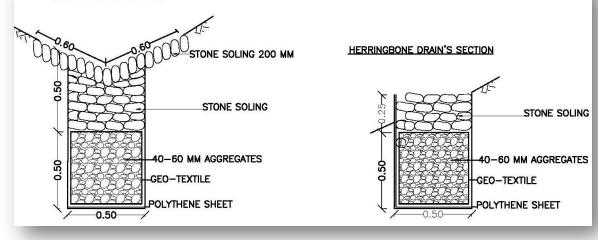
#### Small scale civil engineering structures



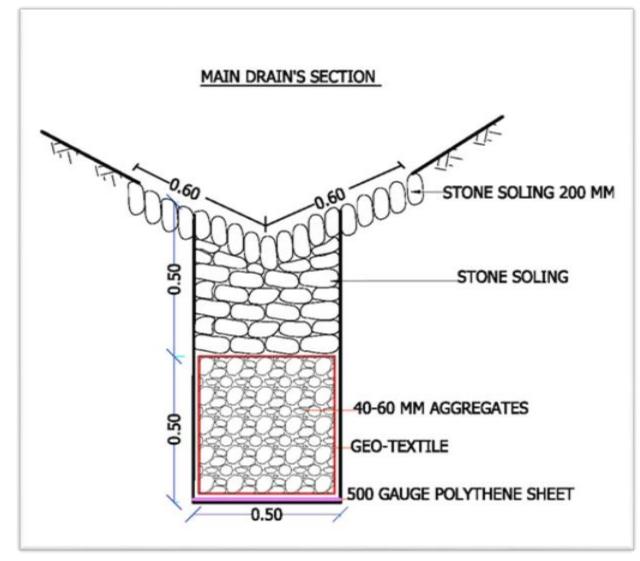
#### Wattle fence and crib wall

#### Small scale civil engineering structures



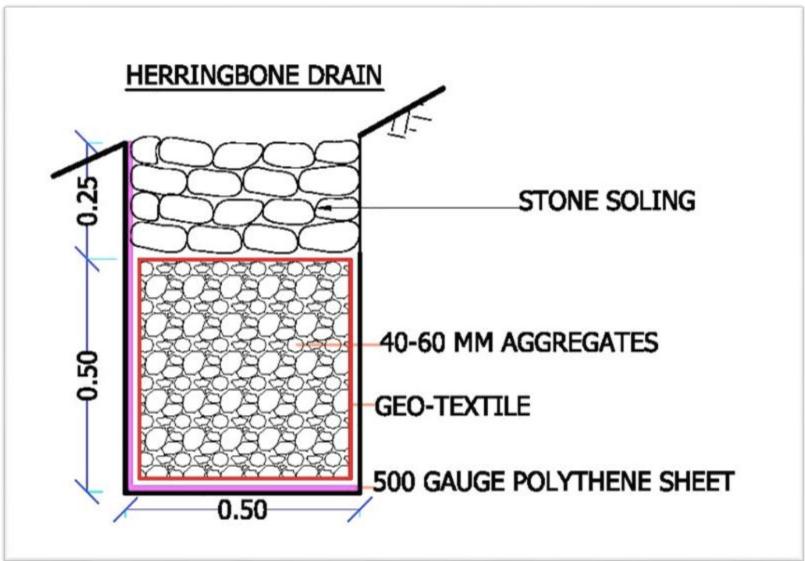

#### Prop wall

Dentition

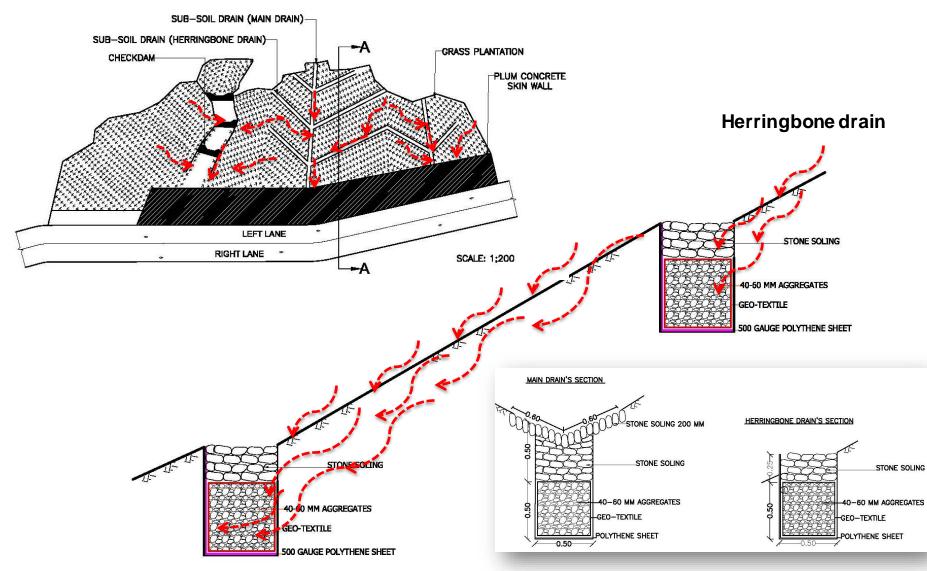

### Design aspects of civil engineering structures Small scale civil engineering structures



MAIN DRAIN'S SECTION




#### Sub-surface drain




Copyright: Shankar Rai

#### Sub-surface drain



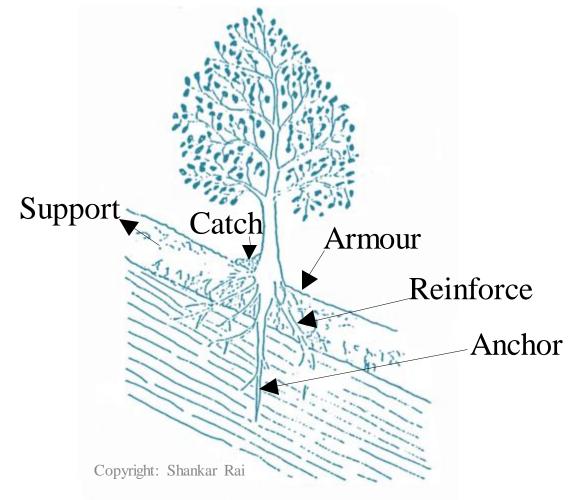
#### ROADSIDE SLOPE PLAN AND PROPOSED BIO-ENGINEERING WORK



Copyright: Shankar Rai

# Engineering functions of bio-engineering systems

Engineering functions of civil engineering structures




1. Catch

- 2. Armour
- 3. Reinforce
- 4. Anchor
- 5. Support
- 6. Drain

#### Engineering functions of bio-engineering systems

Engineering functions of plants

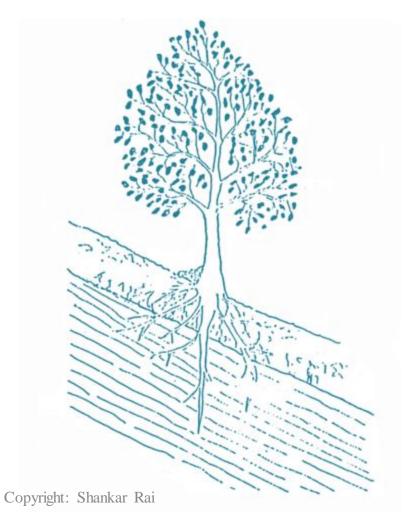


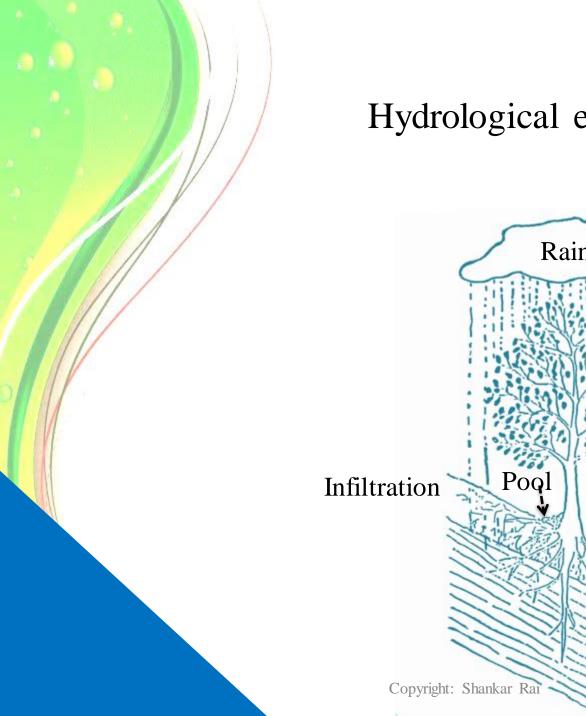


### Engineering functions of bio-engineering system

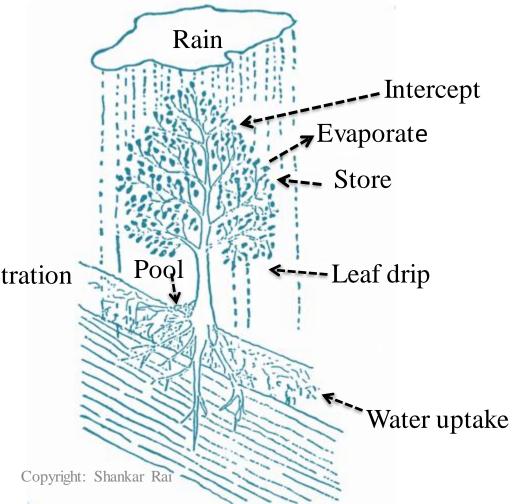
Plant has two further benefits too that are not supplied by civil engineering. These are :

- environmental improvement of the site: a cover of vegetation encourages other plants and animals to live on the slope: this makes it a nature-based solution;
- the rooting system of plants can interrupt the shear plane and stop it spreading further sideways in the current phase of active instability.


### Engineering functions of bio-engineering system


#### Engineering functions

| Engineering function | Civil engineering system        | Vegetative system                    |
|----------------------|---------------------------------|--------------------------------------|
| Catch                | Checkdam, Coir net              | shrubs, bamboo (many stems);         |
| Armour               | Stone pitching, Revetment wall, | grass carpet (dense, fibrous roots); |
| Reinforce            | Reinforced earth, soil nailing; | densely-rooting system               |
| Anchor               | Rock anchors, rock bolts        | deeply-rooting trees                 |
| Support              | Retaining wall, Prop wall       | large trees                          |
| Drain                | Lined drain, subsurface drain   | plants are not currently used        |


Hydrological effects of plants

How plants affect rainwater on its way to the ground





#### Hydrological effects of plants



### Mechanical effects of plants

| Mechanical mechanisms                                                                         | Effect     |
|-----------------------------------------------------------------------------------------------|------------|
| • Stems and trunks trap materials that are moving down the slope.                             | Positive   |
| • Roots bind soil particles to the ground surface and reduce their susceptibility to erosion. | Positive   |
| • Roots penetrating through the soil cause it to resist deformation.                          | • Positive |

## Mechanical effects of plants

| Mechanical mechanisms                                                                                           | Effect   |
|-----------------------------------------------------------------------------------------------------------------|----------|
| • Some plants' woody roots may open the rock joints due to thickening as they grow.                             | Negative |
| • The root cylinder of trees holds up the slope above through buttressing and arching.                          | Positive |
| • Tap root or near vertical roots penetrate into the firmer stratum below and pin down the overlying materials. | Positive |
| • Vegetation exposed to wind transmits dynamic forces into the slope.                                           | Negative |

### Hydrological effects of plants

| Hydrological mechanisms                                   | Effect   |
|-----------------------------------------------------------|----------|
| • Leaves intercept raindrops before they hit the ground.  | Positive |
| • Water evaporates from the leaf surface.                 | Positive |
| • Water is stored in the canopy and stems.                | Positive |
| • Large or localised water droplets fall from the leaves. | Negative |

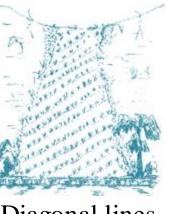
## Hydrological effects of plants

| Hydrological mechanisms                                                                                | Effect                          |
|--------------------------------------------------------------------------------------------------------|---------------------------------|
| • Surface run-off is checked by stems and grass leaves.                                                | Positive                        |
| • Stems and roots increase the roughness of the ground surface and the permeability of the soil.       | Site<br>dependent               |
| • Roots extract moisture from the soil which is then released to the atmosphere through transpiration. | Weather-<br>dependent<br>effect |

#### Session-6

### Vegetative Structures and Design Aspects

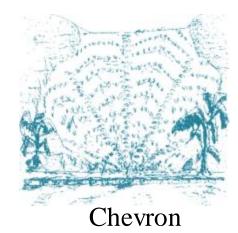
Vegetative structures


#### Grass planting:

- Contour lines of grass planting
- Diagonal lines of grass planting
- Vertical lines of grass planting
- Chevron line of grass planting
- Random grass planting
- Grass seeding
- Sodding (Turfing)

- Brush layering
- Palisade
- Fascine
- Live checkdam
- Tree and shrub planting
- Bamboo planting

### Grass planting

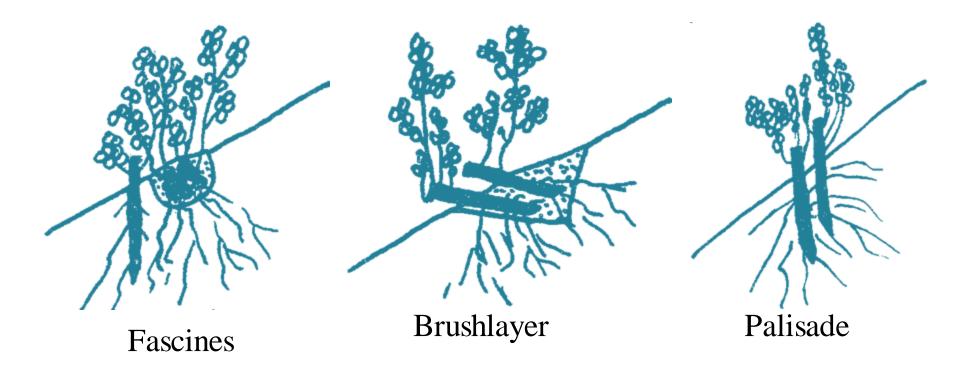


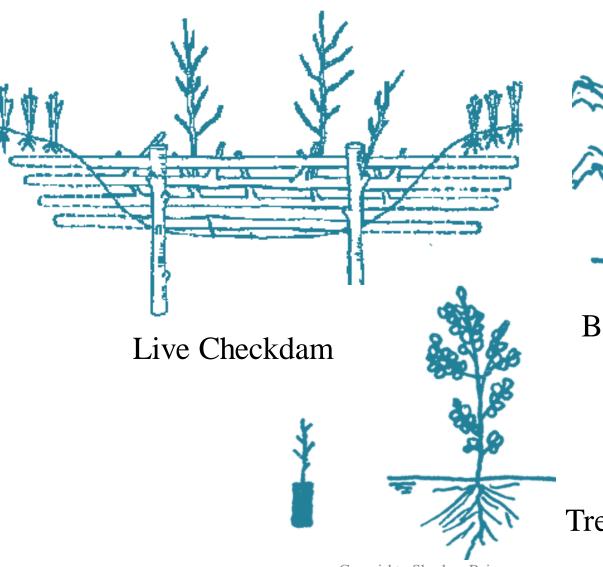



Diagonal lines



Vertical lines




Grass seeding



Copyright: Shankar Rai





Bamboo planting

Tree and Shrub planting



Brushlayers



Live checkdams



Fascines






Palisades







© Shankar Rai



#### Grass seeding

## Design aspects of vegetative structures

| System          | Functions                   | Method of operation                 |
|-----------------|-----------------------------|-------------------------------------|
| Horizontal line | Catch, armour,              | Dense lines retard surface          |
| grass planting  | reinforce                   | water flow                          |
| Diagonal line   | Armour,                     | Dense lines guide water             |
| grass planting  | reinforce, catch            | along the line                      |
| Grass seeding   | Armour, Catch,<br>reinforce | Dense grass, mat, rooting<br>system |

## Design aspects of vegetative structures

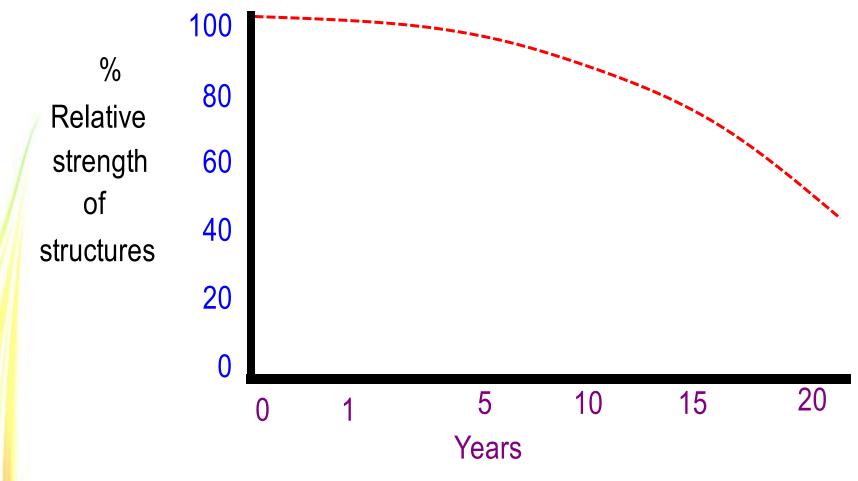
| System         | Functions                | Method of operation                                                                    |
|----------------|--------------------------|----------------------------------------------------------------------------------------|
| Palisades      | Catch,<br>reinforce      | Dense lines above and<br>below the ground retard<br>surface and shallow water<br>flow  |
| Brush layering | Catch,<br>reinforce      | Dense lines, strong buried<br>branches retard surface and<br>shallow ground water flow |
| Fascines       | Catch, support,<br>drain | Woody bundles, dense<br>stems, porous, can drain<br>soil if laid down slope            |

## Design aspects of vegetative structures

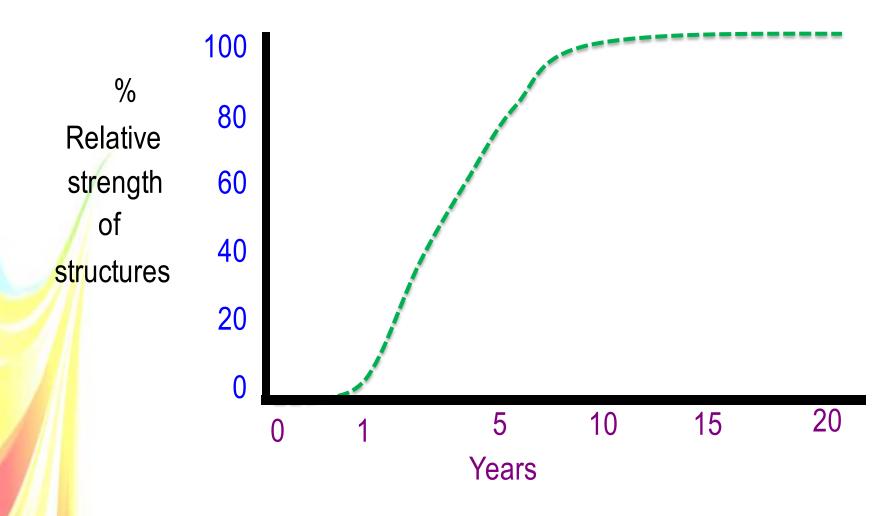
| System             | Functions                               | Method of operation                                                      |
|--------------------|-----------------------------------------|--------------------------------------------------------------------------|
| Shrub planting     | Catch, armour,<br>reinforce,<br>anchor  | Bunchy leaves, multiple<br>stems, lateral roots, tap<br>roots            |
| Tree planting      | Support,<br>reinforce,<br>anchor        | Lateral and near vertical<br>rooting systems, root<br>cylinder           |
| Bamboo<br>planting | Catch, armour,<br>reinforce,<br>support | Dense poles, massive<br>rooting systems, dense<br>leaves, grows all year |

## Vegetative structures and design aspects

Effect of vegetative structure

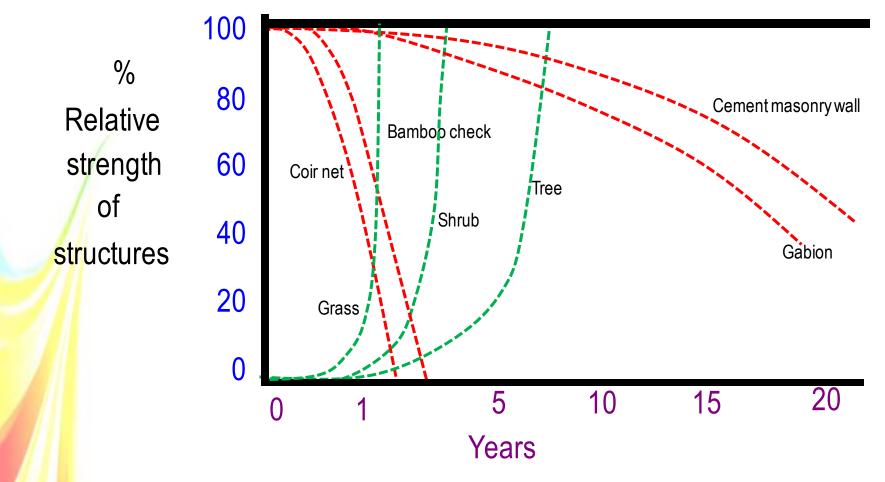

• immediate and longer term effect:

Fascines, palisades and brush layering and live checkdams


• longer term effect:

Grass seeding and planting, tree and shrub planting.

Life span and relative strength of civil engineering structures




## Life span and relative strength of plants



Copyright: Shankar Rai

# Interaction between plant and civil engineering structure



Copyright: Shankar Rai

Physical relationships between civil and vegetative engineering structures

• Toe wall below bamboo :

structure protects plant;

• Plants around end of toe wall :

plant protects structure;

Physical relationships between civil and vegetative engineering structures

• Trees above toe wall

## *plant improves performance of structure;*

• Coir netting with grass plantation

### plant replaces structure; (takeover and handover)

## Compatibility of engineering structures

| Civil engineering | Engineering | Vegetative    | Engineering | Compatibility |
|-------------------|-------------|---------------|-------------|---------------|
| structure         | function    | structure     | function    |               |
| Coir/jute netting | Catch       | Tree planting | Support     | No            |

| Coir/jute netting | Catch | Shrub planting | Catch | No  |
|-------------------|-------|----------------|-------|-----|
| Coir/jute netting | Catch | Grass planting | Catch | Yes |

## Session-7 Selection of Bio-engineering Techniques

## Selection of Bio-engineering Techniques

## Site assessment

| Site Assessment Procedure Stages |                                                                                                                                                  | Action              |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Stage 1                          | Location: Km<br>- Above road<br>- Below road<br>- Through road (slide is above and below road)<br>- Off road alignment but within responsibility | Observe<br>and note |
| Stage 2                          | Type of failure :<br>- Sheet erosion<br>- Rill erosion<br>- Gully erosion<br>- Translation slide<br>- Rotational slide,<br>- Debris flow         | Describe            |

| Site Assessment Procedure Stages |                                  | Action   |
|----------------------------------|----------------------------------|----------|
| Stage 3                          | Examine initial cause of failure | Describe |
|                                  | - Surface water,                 |          |
|                                  | - Ground water,                  |          |
|                                  | - Under cutting,                 |          |
|                                  | - Weathering,                    |          |
|                                  | - Additional load                |          |
| Stage 4                          | Failure depth                    | Describe |
|                                  | - less than 25 mm.               |          |
|                                  | - 25-100 mm.                     |          |
|                                  | - 100-250 mm.                    |          |
|                                  | - 250-1000 mm.                   |          |
|                                  | - More than 1000 mm.             |          |

| Site Assessment Procedure Stages |                                   | Action   |  |
|----------------------------------|-----------------------------------|----------|--|
| Stage 5                          | e 5 Draw plan and profile of site |          |  |
|                                  | - Illustrate the landslide zones  | note     |  |
| Stage 6                          | Dimension of site                 | Measure  |  |
|                                  | - Length                          | and note |  |
|                                  | - Breadth                         |          |  |
|                                  | - Slope angle                     |          |  |
|                                  | - Aspect                          |          |  |
|                                  | - Altitude of site                |          |  |

| Site Assessment Procedure Stages |                                | Action   |
|----------------------------------|--------------------------------|----------|
| Stage 7                          | Material formation of slope    | Describe |
|                                  | Alluvium debris                |          |
|                                  | - Unconsolidated debris        |          |
|                                  | - Consolidated debris          |          |
|                                  | Colluvium debris               |          |
|                                  | - Unconsolidated debris        |          |
|                                  | - Consolidated debris          |          |
|                                  | Residual soil,                 |          |
|                                  | Rock (Hard or Soft rock)       |          |
|                                  | Alternating hard and soft rock |          |

| Site Ass | Action                         |                     |                     |
|----------|--------------------------------|---------------------|---------------------|
| Stage 8  | Rock orientation, weathering g | grade and degree of | Measure<br>and Note |
|          | Weathering grade and           | Degree of fracture  |                     |
|          | Fresh                          | • Fresh             | -                   |
|          |                                | • 110311            |                     |
|          | • Faintly weathered            | • Fractured         |                     |
|          | • Slightly weathered           | • Highly fractured  |                     |
|          | Moderately weathered           |                     |                     |
|          | • Highly weathered             |                     |                     |
|          | Completely weathered           |                     |                     |

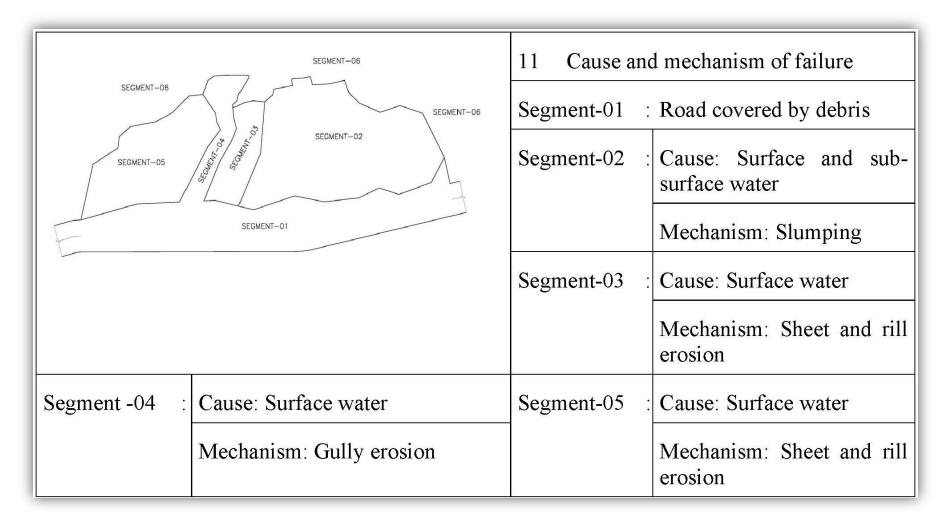
| Site Ass | Site Assessment Procedure Stages  |                              |                   |
|----------|-----------------------------------|------------------------------|-------------------|
| Stage 9  | Divide the slope into the segment |                              | Draw and describe |
| Stage 10 | Examine cause and segment         | mechanism of failure of each | Describe          |
| Stage 11 | Material drainage an              | nd moisture of each segment  | Describe          |
|          | Material drainage                 | Moisture                     |                   |
|          | • Well drain                      | • Dry                        |                   |
|          | • poor drain                      | • Wet                        |                   |
|          |                                   | Spring                       |                   |
|          |                                   | • Seepage flow               |                   |
|          |                                   | • Active seepage flow        |                   |
|          |                                   | Monsoon saturation           |                   |

| Site Assessment Procedure Stages |                                                                                           | Action   |
|----------------------------------|-------------------------------------------------------------------------------------------|----------|
| Stage 12                         | History of slide                                                                          | Describe |
|                                  | • Not moved within last 5 years                                                           |          |
|                                  | • Moved this year for the first time                                                      |          |
|                                  | • Moved within the last 5 years but not this year                                         |          |
|                                  | <ul> <li>Moves every year by initial mechanism -<br/>diminishing</li> </ul>               |          |
|                                  | <ul> <li>Moves every year by initial mechanism –<br/>constant or getting worse</li> </ul> |          |

| Site Asse | Action                                                                         |  |  |  |
|-----------|--------------------------------------------------------------------------------|--|--|--|
| Stage 13  | Life progression of slide Descri                                               |  |  |  |
|           | • Stable slope formed or will stabilize naturally                              |  |  |  |
|           | • Further movement expected, by less serious mechanism (post-slide adjustment) |  |  |  |
|           | • Repeated movement expected by initial mechanism or another equally serious   |  |  |  |
|           |                                                                                |  |  |  |

| Site Asso | Action                                                                          |          |
|-----------|---------------------------------------------------------------------------------|----------|
| Stage 14  | Determine required engineering functions of each segments to stabilise the site | Describe |
|           | • Catch                                                                         |          |
|           | • Armour                                                                        |          |
|           | Reinforce                                                                       |          |
|           | • Anchor                                                                        |          |
|           | • Support                                                                       |          |
|           | Drain                                                                           |          |




| Site Asse | Action                                 |                   |
|-----------|----------------------------------------|-------------------|
| Stage 15  | Annual rainfall of site or region Note |                   |
| Stage 16  | Land use pattern                       | Describe          |
| Stage 17  | Existing structures if any             | Draw and describe |
| Stage 18  | Surrounding vegetation                 | Note              |
|           | – Trees                                |                   |
|           | – Shrubs                               |                   |
|           | – Grasses                              |                   |
|           | – Bamboo                               |                   |



Copyright: Shankar Rai

## Example of site assessment

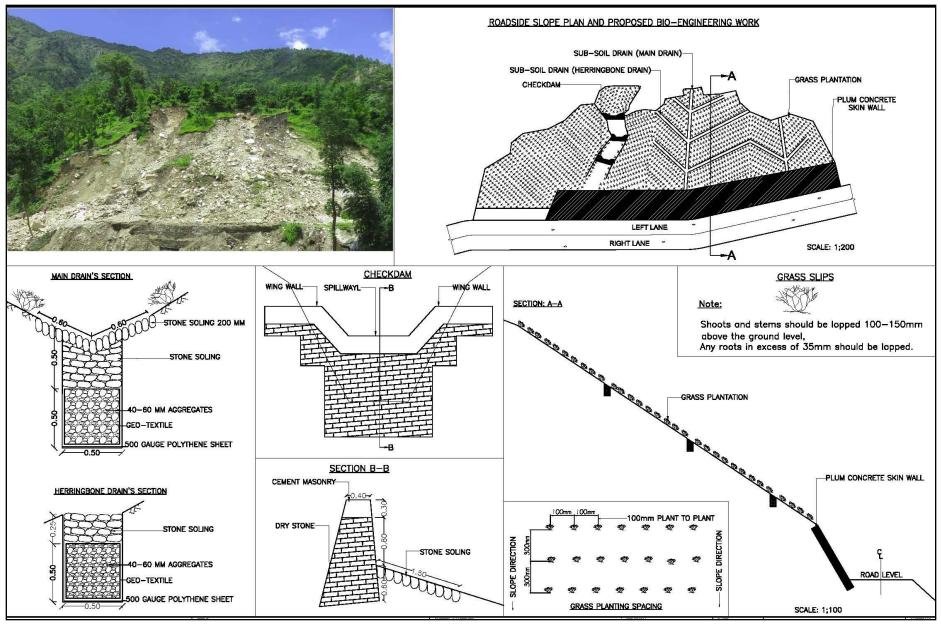
|  | 1. | Location : Km. 9+300 above the road (Hillside) |
|--|----|------------------------------------------------|
|  | 2. | Type of failure : Translational failure        |
|  | 3  | Initial cause of failure : Road undercutting   |
|  | 4. | Failure depth : 250-1000 mm                    |
|  | 5  | Dimension of slide : $L = 35m$ $B = 60m$       |
|  | 6  | Slope angle : 35°-55° 7 Aspect : S/E           |
|  | 8  | Altitude 1230m 9 Rainfall : 1050mm             |
|  | 10 | Material : Colluvium debris (Unconsolidated)   |



Site assessment procedure Engineering function requirement for slope stabilization Segment-01

- Support

Segment-02


- Drain (Surface+Sub-surface water)
- Armour
- Reinforce
- Catch

Site assessment procedure Engineering function requirement for slope stabilization Segment-03

- Armour
- Catch
- Reinforce
- Segment-04
  - Catch
  - Armour
  - Reinforce

## Segment-05

- Armour
- Catch
- Reinforce



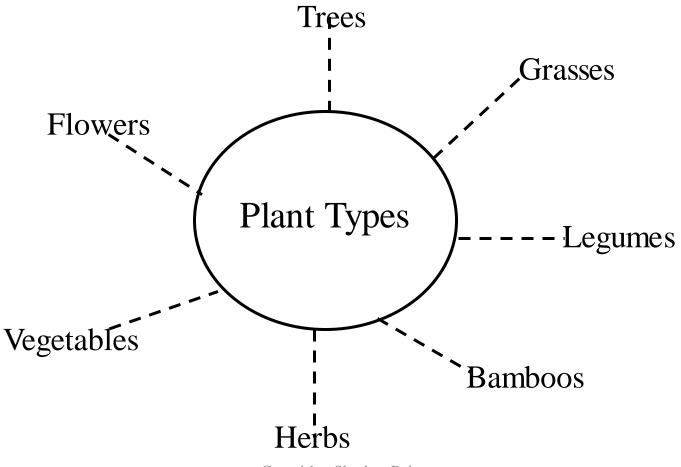


- Slope Angle
- Slope Length
- Material Drainage /Site Moisture
- Previous and Potential Problem
- Requirement of Engineering Functions

| Slope<br>Angle | →<br>Slope<br>Length | -<br>Material<br>Drainage | -<br>Site<br>Moisture | →<br>Previous/ Potential<br>Problems | →<br>Functions<br>Required     | Technique(S)                                                                        |
|----------------|----------------------|---------------------------|-----------------------|--------------------------------------|--------------------------------|-------------------------------------------------------------------------------------|
|                |                      |                           | Damp                  | Erosion, slumping                    | Armour,<br>reinforce           | Diagonal grass lines                                                                |
| > 45°          | > 15<br>metres       | Good                      | Dry                   | Erosion                              | Armour,<br>reinforce           | Contour grass lines,<br>jute/coir netting and<br>grass planting                     |
|                |                      | Poor                      | Damp                  | Slumping, erosion                    | Drain,<br>armour,<br>reinforce | Rill and ridge<br>formation and stone<br>pitching on rills,<br>chevron grass lines, |
|                |                      |                           | Dry                   | Erosion, slumping                    | Armour,<br>reinforce           | Diagonal grass lines                                                                |

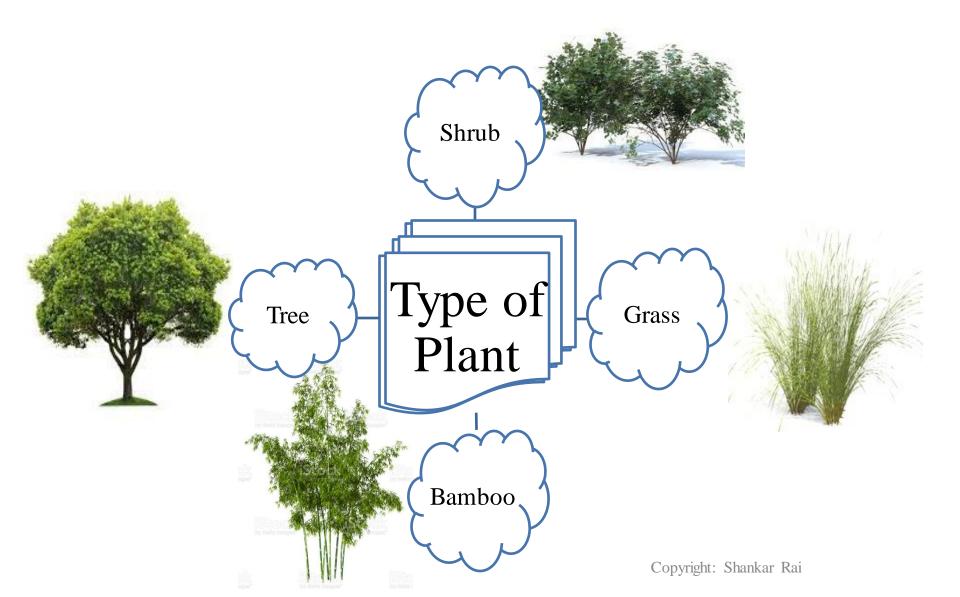
| <b>→</b><br>Slope<br>Angle | <b>→</b><br>Slope<br>Length | ➡<br>Material<br>Drainage | <b>→</b><br>Site<br>Moisture | ←<br>Previous/ Potential<br>Problems | <i>➡</i><br>Functions<br>Required | Technique(S)                                                                                                                                                                       |
|----------------------------|-----------------------------|---------------------------|------------------------------|--------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            | < 15<br>metres              | Good                      | Any                          | Erosion                              | Armour,<br>reinforce              | Diagonal grass lines or<br>Jute/coir netting and<br>randomly planted grass                                                                                                         |
| > <b>45</b> °              |                             | 5<br>res<br>Poor          | Damp                         | Slumping, erosion                    | Drain,<br>armour,<br>reinforce    | <ul> <li>Down slope grass lines<br/>or</li> <li>Diagonal grass lines or</li> <li>Rill and ridge formation<br/>and stone pitching on<br/>rills, chevron grass<br/>lines,</li> </ul> |
|                            |                             |                           | Dry                          | Erosion, slumping                    | Armour,<br>reinforce,<br>drain    | Jute/coir netting and<br>randomly planted grass<br>or<br>Contour grass lines or<br>Diagonal grass lines                                                                            |

| ►<br>Slope<br>Angle | ➡<br>Slope<br>Length | ➡<br>Material<br>Drainage |     | ➡<br>Previous/ Potential<br>Problems | ►<br>Functions<br>Required     | Technique(S)                                                                                                                                                                                                                                     |
|---------------------|----------------------|---------------------------|-----|--------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30°-45°             | > 15<br>metres       | Good                      | Any | Erosion                              | Armour,<br>reinforce,<br>catch | <ul> <li>Horizontal bolster cylinders or<br/>Brushlayer and shrub planting/</li> <li>Diagonal/Contour grass lines<br/>and vegetated stone pitched<br/>rills or</li> <li>Grass seeding with mulch and<br/>wide mesh jute/coir netting.</li> </ul> |
|                     |                      | Poor                      | Any | Slumping, erosion                    | Drain,<br>armour,<br>reinforce | Herringbone sub-soil drain and<br>diagonal grass lines, shrub<br>planting or<br>Herringbone sub-soil drain and<br>shrub planting grass seeding,<br>mulch                                                                                         |


| ←<br>Slope<br>Angle | a a a a 🖷 a a a a a a | ➡<br>Material<br>Drainage | ←<br>Site<br>Moisture | ←<br>Previous/ Potential<br>Problems | ←<br>Functions<br>Required     | Technique(S)                                                                                                                                                                                                                          |
|---------------------|-----------------------|---------------------------|-----------------------|--------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30°-45°             |                       | Good                      | Any                   | Erosion                              | Armour,<br>reinforce,<br>catch | <ul> <li>Brushlayer of hardwood<br/>cuttings or</li> <li>Contour grass lines or</li> <li>Contour fascines or</li> <li>Palisade of hardwood<br/>cuttings and grass seeding<br/>and cover with mulch.</li> </ul>                        |
|                     | < 15<br>metres        | Poor                      | Any                   | Slumping, erosion                    | Drain,<br>armour,<br>reinforce | Herringbone sub-soil drain<br>and diagonal grass lines,<br>brushlayer, or shrub<br>planting and grass seeding<br>and cover with mulch or<br>Herringbone fascines and<br>shrub planting and grass<br>planting or seeding with<br>mulch |

| ►<br>Slope<br>Angle | ►<br>Slope<br>Length | ➡<br>Material<br>Drainage |     | ←<br>Previous/ Potential<br>Problems | ←<br>Functions<br>Required   | Technique(S)                                                                                                                                                            |
|---------------------|----------------------|---------------------------|-----|--------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     |                      | Good                      | Any | Erosion                              | Armour,<br>catch             | Site seeding of grass and<br>shrub/tree planting or<br>Shrub/tree planting                                                                                              |
| <30°                | Any                  | Poor                      | Any | Slumping, erosion                    | Drain,<br>armour,<br>catch   | Herringbone sub-soil drain,<br>diagonal grass lines and<br>shrub/tree planting or<br>Herringbone sub-soil drain,<br>shrub/tree planting and grass<br>seeding with mulch |
|                     | < 15<br>metres       | Any                       |     | Erosion                              | Armour,<br>catch             | Sodding and shrub/tree planting                                                                                                                                         |
|                     | Base of a            | ny slope                  |     | Planar sliding or<br>shear failure   | Support,<br>anchor,<br>catch | Large bamboo planting or<br>Large tree planting                                                                                                                         |

| Gullies<br>≤45° | Any     | gully                |     | Erosion              | Catch, armour,<br>reinforce | Large bamboo planting or<br>Live check dam or<br>Vegetated stone pitching                                             |
|-----------------|---------|----------------------|-----|----------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Special         | conditi | ons                  |     |                      |                             |                                                                                                                       |
| >30°            | Any     | y Any rocky material |     | Debris fall          | Reinforce, anchor           | Site seeding of<br>shrubs/small trees                                                                                 |
| Any loo<br>sand | se      | Good                 | Any | Erosion              | Armour, catch               | Jute/coir netting and<br>randomly planted grass                                                                       |
| Any red soil    |         | Poor                 | Any | Erosion,<br>slumping | Armour, drain               | Rill and ridge formation<br>and stone pitching on<br>rills, diagonal/chevron<br>grass lines, shrubs/trees<br>planting |


# Session-08 Selection of Plant Species for Bio-engineering

Selection of plant species for bio-engineering General plant types



Copyright: Shankar Rai

### General plant types for bio-engineering



## General plant types for bio-engineering

- 1. Woody
  - Trees
  - Shrubs
  - Bamboos



- 2. Non- woody
  - Grass
    - Clumping grass
    - Matting grasses

|                          |       | Woody  | Non-woody |                     |                    |
|--------------------------|-------|--------|-----------|---------------------|--------------------|
| Engineering<br>functions | Trees | Shrubs | Bamboos   | Clumping<br>grasses | Matting<br>grasses |
| Catch                    |       |        |           |                     |                    |
| Armour                   |       |        |           |                     |                    |
| Reinforce                |       |        |           |                     |                    |
| Anchor                   |       |        |           |                     |                    |
| Support                  |       |        |           |                     |                    |

\*\*\* Excellent \* Good \*\* Very good

- No good at all

|                          |       | Woody  | Non-woody |                     |                    |
|--------------------------|-------|--------|-----------|---------------------|--------------------|
| Engineering<br>functions | Trees | Shrubs | Bamboos   | Clumping<br>grasses | Matting<br>grasses |
| Catch                    | *     | ***    | ***       | **                  | *                  |
| Armour                   | *     | *      | **        | **                  | ***                |
| Reinforce                | ***   | ***    | ***       | *                   | -                  |
| Anchor                   | ***   | **     | -         | -                   | -                  |
| Support                  | ***   | *      | ***       | -                   | -                  |

\*\*\* Excellent

\* Good

\*\* Very good

- No good at all

| Hydrological |       | Woody  | Non-woody |                     |                    |
|--------------|-------|--------|-----------|---------------------|--------------------|
| effects      | Trees | Shrubs | Bamboos   | Clumping<br>grasses | Matting<br>grasses |
| Intercept    |       |        |           |                     |                    |
| Evaporate    |       |        |           |                     |                    |
| Store        |       |        |           |                     |                    |
| Leaf drip    |       |        |           |                     |                    |
| Retard       |       |        |           |                     |                    |
| Infiltrate   |       |        |           |                     |                    |

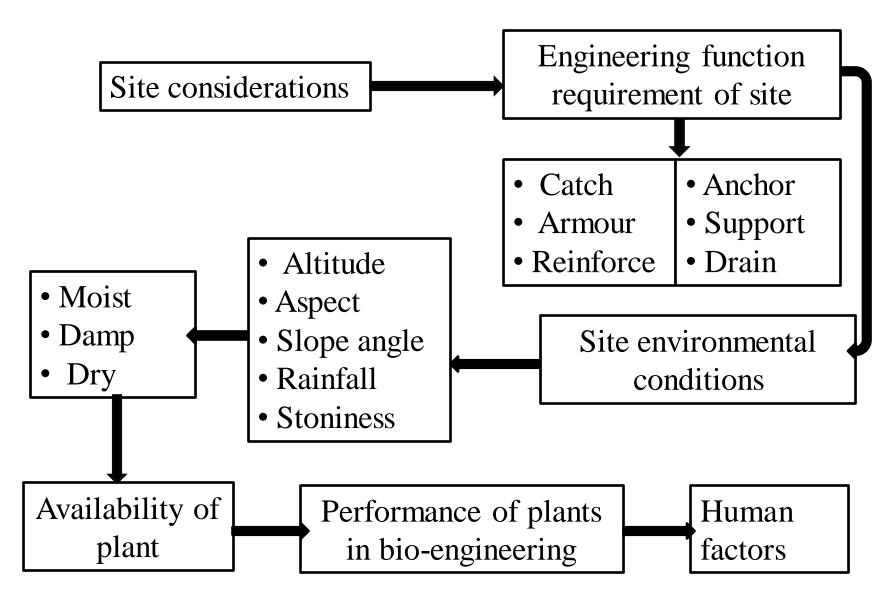
\*\*\* Excellent

\* Good

\*\* Very good

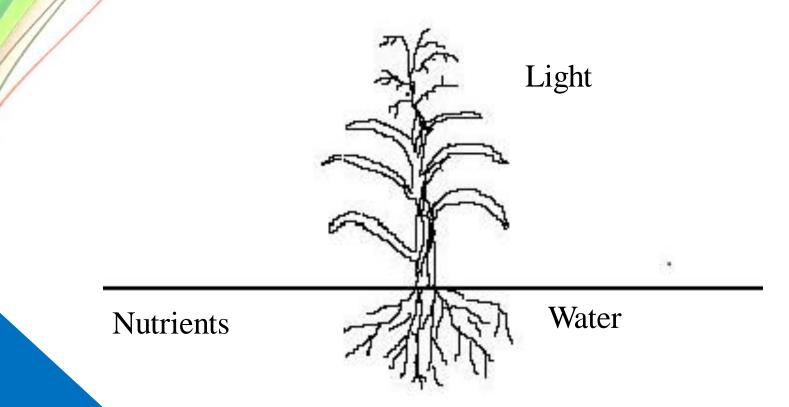
- No good at all

| Hydrological |       | Woody  | Non-woody |                     |                    |
|--------------|-------|--------|-----------|---------------------|--------------------|
| effects      | Trees | Shrubs | Bamboos   | Clumping<br>grasses | Matting<br>grasses |
| Intercept    | **    | **     | ***       | ***                 | **                 |
| Evaporate    | ***   | **     | ***       | *                   | *                  |
| Store        | **    | **     | ***       | **                  | -                  |
| Leaf drip    | ***   | **     | *         | -                   | -                  |
| Retard       | *     | **     | **        | **                  | ***                |
| Infiltrate   | ***   | ***    | ***       | ***                 | ***                |


\*\*\* Excellent

\* Good

\*\* Very good

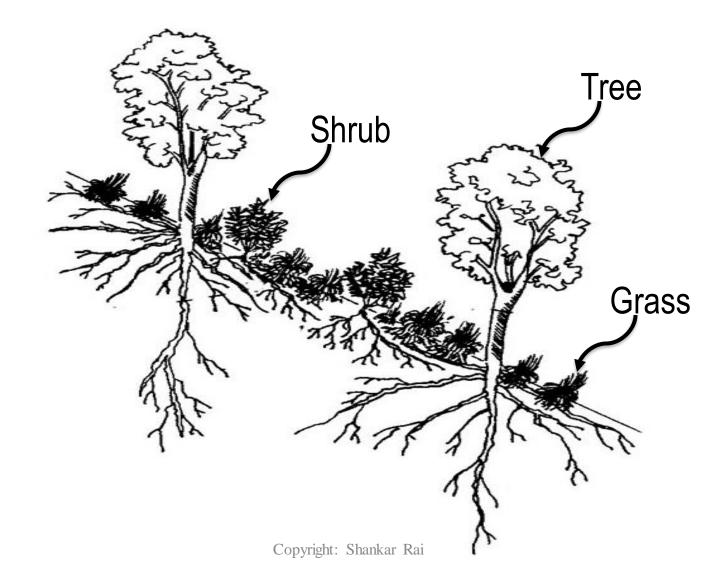

- No good at all

## Selection of plants for bio-engineering



Selection of plants for bio-engineering

Competition of plants

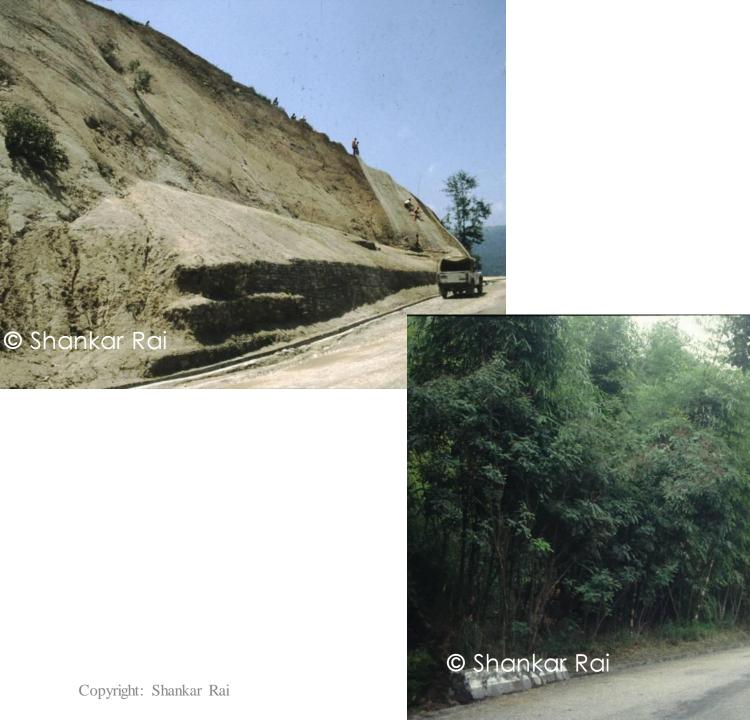



Plant community for bio-engineering

Plant community

An established group of plants living more-or-less in balance with each other and their environment. The group can be natural or managed.

## Plant community for bio-engineering






# Session-9 Bio-engineering Works for Slope Protection





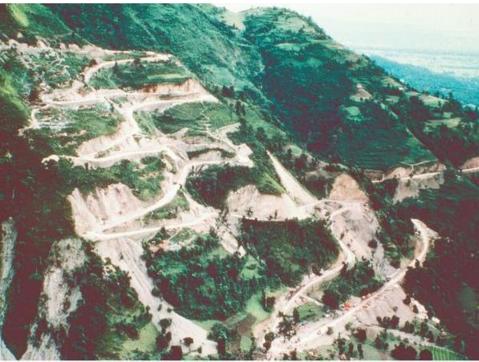






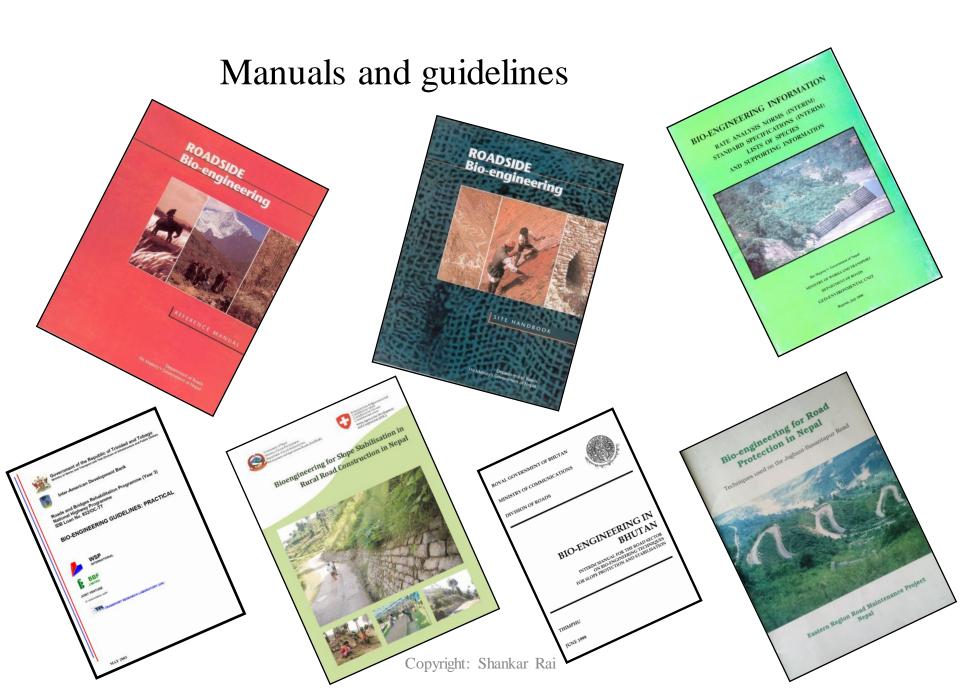


© Shankar Rai


O Shankar Rái



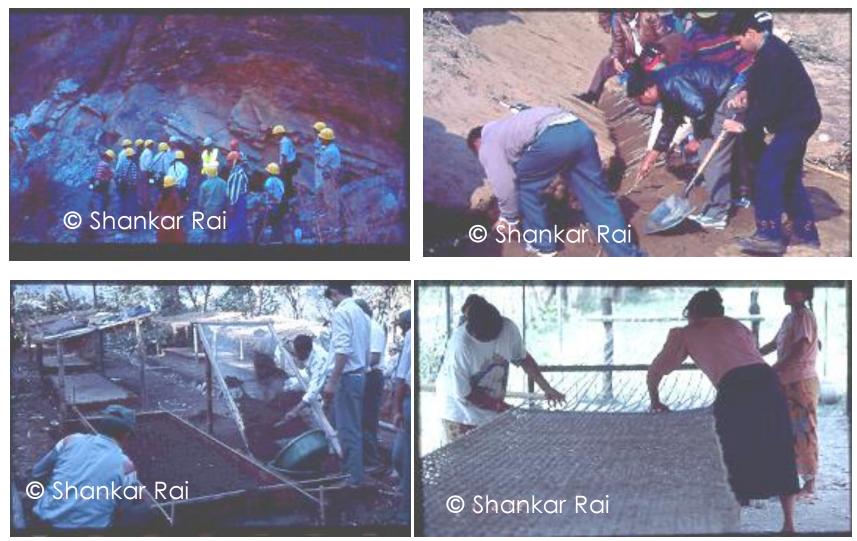
Copyright: Shankar Rai




177










### Training



## Training



# Timor-Leste

#### Training



#### DEMOSTRATION TO SUPERVISION TEAM AND CONTRACTOR AT SITE



#### DEMOSTRATION TO SUPERVISION TEAM AND CONTRACTOR AT SITE







REPÚBLICA DEMOCRÁTICA DE TIMOR LESTE MINISTÉRIO DAS OBRAS PÚBLICAS, TRANSPORTES E COMUNICAÇÕES DIRECTORATE GENERAL FOR PUBLIC WORKS NATIONAL DIRECTORATE FOR ROADS, BRIDGES AND FLOOD CONTROL PROJECT MANAGEMENT UNIT

#### GUIDELINES ON SOIL BIO-ENGINEERING PRACTICES FOR ROADWORKS & SLOPE STABILISATION, TIMOR-LESTE

AUGUST 2017

© Shankar Rai

### © Shankar Rai







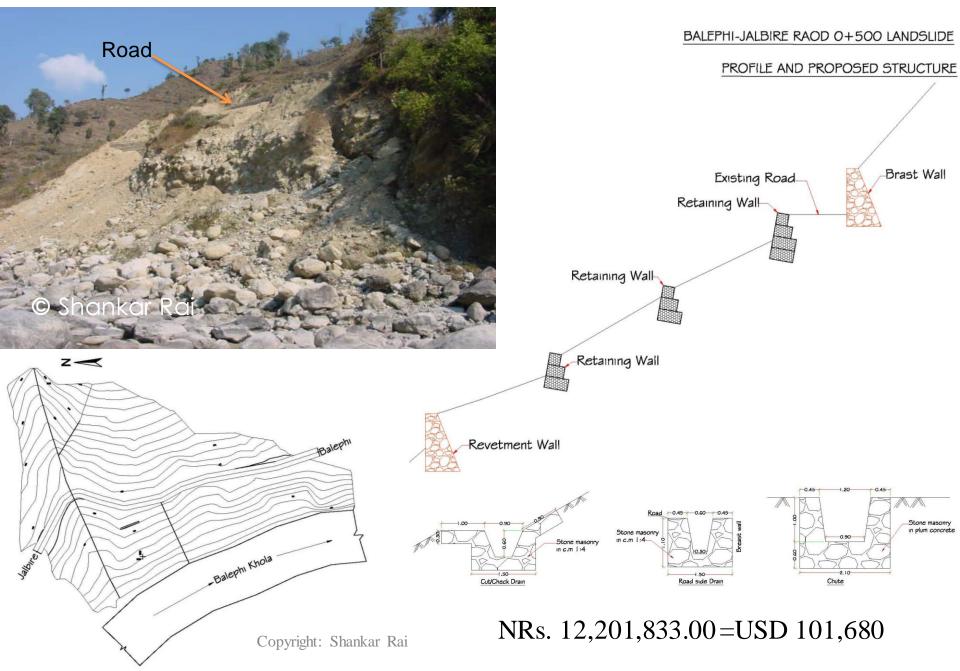




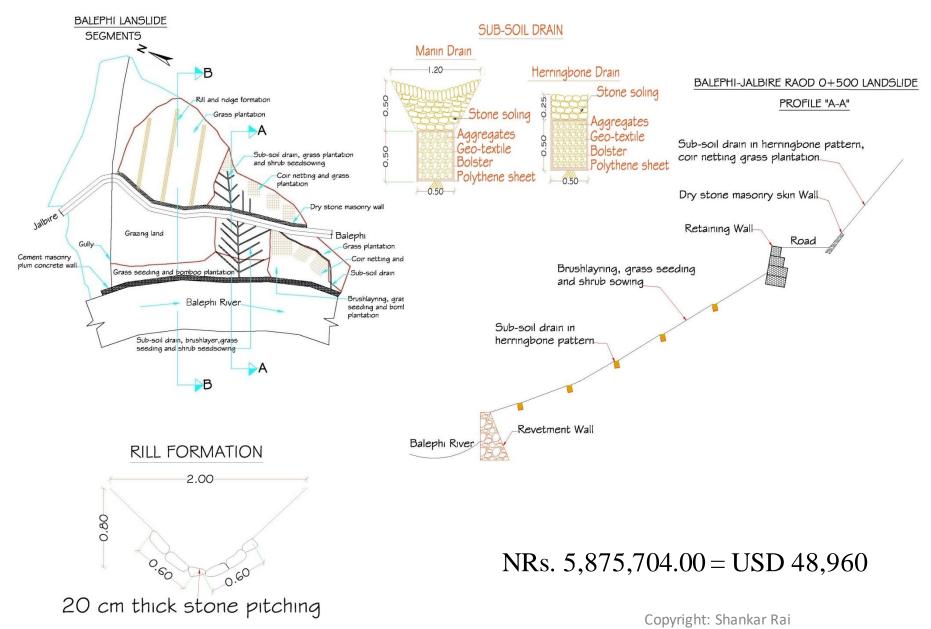




#### © Shankar Rai





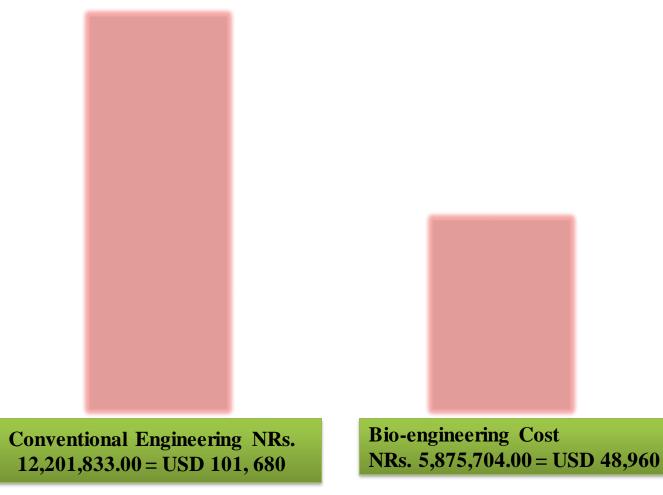

Cost comparison of Conventional and Bio-engineering Techniques for Slope Stabilization

### Conventional Engineering Solution Designed

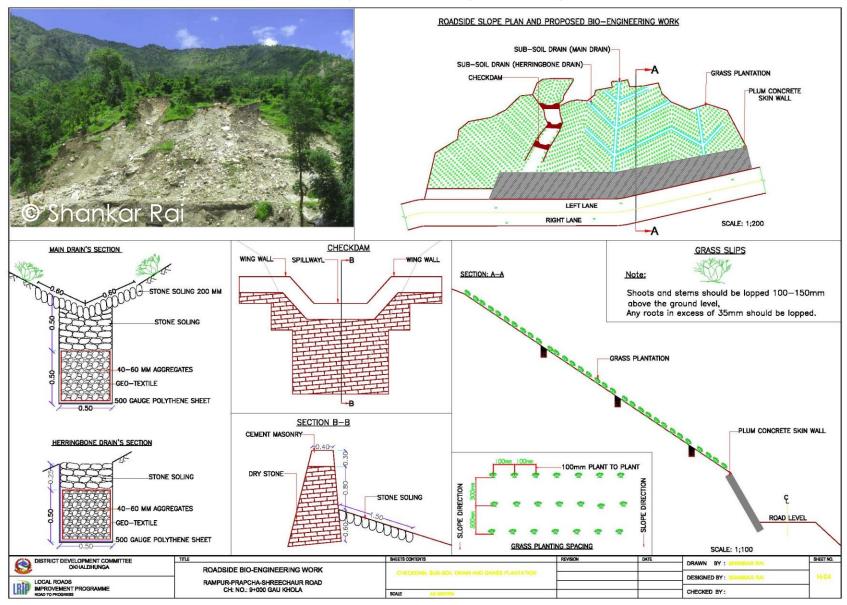


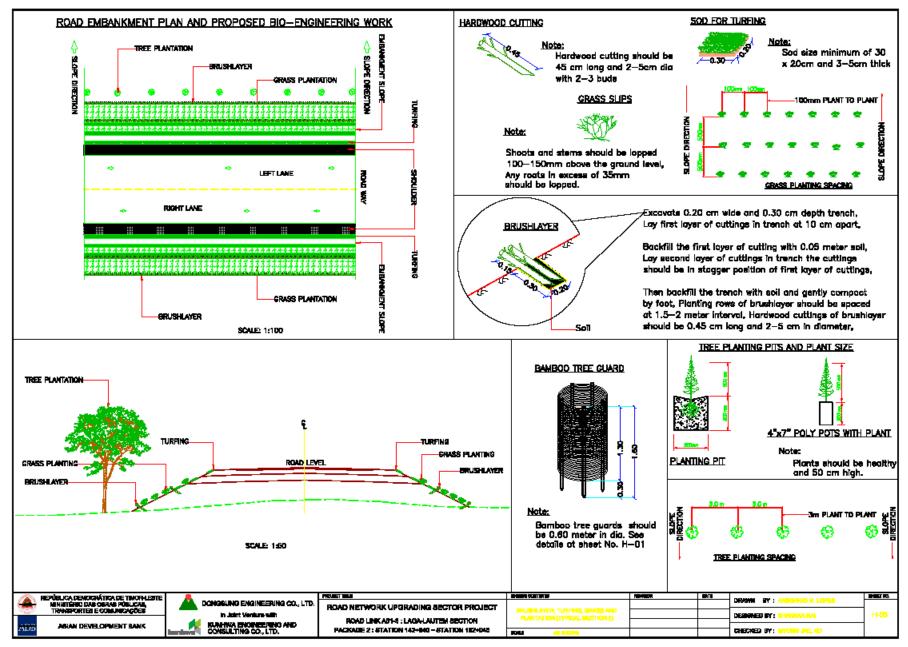
### Bio-engineering solution design and applied








Cost comparison of conventional and Bio-engineering techniques for slope stabilization



### Bio-engineering design





Copyright: Shankar Rai

# Session-10 Bio-engineering Maintenance Tasks and Seasonal Programming of Bio-engineering Works

### Bio-engineering maintenance tasks

What are the possible causes of damage to bio-engineering works?

- slips;
- cultivation practices;
- grazing;
- failure of fascines;
- fire;
- water accumulation;

Bio-engineering maintenance tasks Possible causes of damage to bio-engineering works

- encroachment;
- firewood collecting;
- drought;
- overgrowth of trees;
- competition from weeds;
- deterioration with age.

Bio-engineering maintenance tasksCategories of maintenance tasksa) Protection works:

e.g. protection of plants and planting sites from grazing, theft of firewood and timber, and fire protection works;

b) Plant treatment:

e.g. weeding, mulching, trimming, pruning, grass cutting and thinning of plants;

#### Bio-engineering maintenance tasks

Categories of maintenance tasks

c) Repair to vegetation structures:

e.g. repairs to palisades, fascines and brush layering, and turfing and vegetation enrichment;

d) Repairs to inert structures:

e.g. repairs to revetment and prop walls, gabion walls, bolsters, jute netting and wire netting, and sealing cracks;

Bio-engineering maintenance tasks Categories of maintenance tasks

e) Geophysics:

e.g. small slope trimming, small slip clearance, cleaning subsoil drain outlets. Bio-engineering maintenance tasks Frequency of maintenance activities

a) Routine maintenance:

this is carried out continuously, though not necessarily at the same location repeatedly;

- Protection of site
- Weeding
- Mulching
- Grass cutting

Bio-engineering maintenance tasks Frequency of maintenance activities

b) Periodic maintenance:

periodic maintenance is carried out at longer intervals;

- Thinning and pruning of trees and shrubs
- Repair of vegetative structures
- Vegetative enrichment
- Removal of trees and shrubs

Bio-engineering maintenance tasks Frequency of maintenance activities

c) Emergency maintenance:

this is needed to deal with emergencies and problems calling for immediate action e.g. when the soil slope is threatened.

| Month  | Activities                                                                                                                                                                                                                         |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| July   | <ul> <li>Site plantation works: all grass slips and seedlings; all shrub and tree seedlings and hardwood cuttings; all remaining direct seeding</li> <li>Observation of newly planted sites and maintenance as required</li> </ul> |
| August | <ul> <li>Site plantation works: all grass slips and seedlings; all shrub and tree seedlings and hardwood cuttings; all remaining direct seeding</li> <li>Observation of newly planted sites and maintenance as required</li> </ul> |

| Month     | Activities                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| September | • Observation of newly planted sites and maintenance as required                                                                                                                                                                                            |  |  |  |  |  |  |  |
| October   | <ul> <li>Preparation of nurseries for operations</li> <li>Observation of newly planted sites and maintenance as required</li> <li>Conduct post-monsoon survey of roadside slopes, prioritise problem areas and begin planning for remedial works</li> </ul> |  |  |  |  |  |  |  |

| Month    | Activities                                                                                                                                                                                                                    |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| November | <ul> <li>Nursery operations in full swing</li> <li>Preparation for seed collection: final establishment of quantities required and planning of seed sources</li> <li>Compost and mulch making</li> </ul>                      |
| December | <ul> <li>Nursery operations in full swing</li> <li>Seed collection, treatment and storage</li> <li>Preparation for physical site works: planning, programming, contracting, etc.</li> <li>Compost and mulch making</li> </ul> |

| Month    | Activities                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| January  | <ul> <li>Nursery operations in full swing</li> <li>Seed collection, treatment and storage</li> <li>Begin to prepare nurseries for operations in the spring</li> <li>Preparation for physical site works: planning, programming, contracting, etc.</li> </ul> |  |  |  |  |  |  |  |
| February | <ul> <li>Nursery operations in full swing</li> <li>Site works: slope trimming, start of construction of civil works, etc.</li> <li>Seed collection, treatment and storage</li> <li>Carry out pruning and thinning of large trees</li> </ul>                  |  |  |  |  |  |  |  |

| Month | Activities                                                                                                                                                                      |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| March | <ul> <li>Nursery operations in full swing</li> <li>Site works: slope trimming, civil works construction, etc.</li> <li>Carry out pruning and thinning of large trees</li> </ul> |
| April | <ul> <li>Nursery operations in full swing</li> <li>Site works: slope trimming, civil works construction, etc.</li> </ul>                                                        |

| Month | Activities                                                                                                                                                                            |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| May   | <ul> <li>Nursery operations in full swing</li> <li>Site works: slope trimming, civil works construction, etc.</li> </ul>                                                              |
| June  | <ul> <li>Nursery operations continue</li> <li>Site plantation works: all grass slips and seedlings; all shrub and tree seedlings and hardwood cuttings; all direct seeding</li> </ul> |

| No | Work activity                            |  | FISCAL YEAR: 2020/2021 |      |      |      |      |      |      |      |      |     |      |      | 2021/2022 |  |  |
|----|------------------------------------------|--|------------------------|------|------|------|------|------|------|------|------|-----|------|------|-----------|--|--|
|    |                                          |  | Aug.                   | Sep. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | Jul. | Aug.      |  |  |
|    | Complete 2019/2020 site planting         |  |                        |      |      |      |      |      |      |      |      |     |      |      |           |  |  |
| 2  | Seed collection: grasses                 |  |                        |      |      |      |      |      |      |      |      |     |      |      |           |  |  |
|    | other species                            |  |                        |      |      |      |      |      |      |      |      |     |      |      |           |  |  |
| 3  | Seed treatment                           |  |                        |      |      |      |      |      |      |      |      |     |      |      |           |  |  |
| 4  | Seed storage                             |  |                        |      |      |      |      |      |      |      |      |     |      |      |           |  |  |
| 5  | Site assessment                          |  |                        |      |      |      |      |      |      |      |      |     |      |      |           |  |  |
| 6  | Planning civil/site preparation works    |  |                        |      |      |      |      |      |      |      |      |     |      |      |           |  |  |
| 7  | Tendering and arranging contracts        |  |                        |      |      |      |      |      |      |      |      |     |      |      |           |  |  |
| 8  | Implementing civil /preparation works    |  |                        |      |      |      |      |      |      |      |      |     |      |      |           |  |  |
| 9  | Planning bio-engineering needs           |  |                        |      |      |      |      |      |      |      |      |     |      |      |           |  |  |
| 10 | Bio-eng stock production (in nursery)    |  |                        |      |      |      |      |      |      |      |      |     |      |      |           |  |  |
| 11 | Final site preparation                   |  |                        |      |      |      |      |      |      |      |      |     |      |      |           |  |  |
| 12 | Implementing vegetative structures:      |  |                        |      |      |      |      |      |      |      |      |     |      |      |           |  |  |
|    | - Grass seed sowing on site              |  |                        |      |      |      |      |      |      |      |      |     |      |      |           |  |  |
|    | - Shrub seed sowing on site              |  |                        |      |      |      |      |      |      |      |      |     |      |      |           |  |  |
|    | - Brushlayering, Palisade, Fascine, Live |  |                        |      |      |      |      |      |      |      |      |     |      |      |           |  |  |
|    | checkdam                                 |  |                        |      |      |      |      |      |      |      |      |     |      |      |           |  |  |
|    | - Grass planting                         |  |                        |      |      |      |      |      |      |      |      |     |      |      |           |  |  |
|    | - Tree/shrub planting                    |  |                        |      |      |      |      |      |      |      |      |     |      |      |           |  |  |
|    | Routine activities                       |  |                        |      |      |      |      |      |      |      |      |     |      |      |           |  |  |
| 13 | Protection                               |  |                        |      |      |      |      |      |      |      |      |     |      |      |           |  |  |
| 14 | Monitoring                               |  |                        |      |      |      |      |      |      |      |      |     |      |      |           |  |  |
|    | Maintenance                              |  |                        |      |      |      |      |      |      |      |      |     |      |      |           |  |  |

### Session-11

## Rate Analysis Norms and Standard Specifications for Bio-engineering Works

### Bio-engineering Rate Analysis Norms

TA-9461 REG: Protecting and Investing in Natural Capital in Asia and the Pacific

Developing Bio-engineering Capacity for the Local Government Engineering Department's Operations in the Chittagong Hill Tracts, Bangladesh

**BIO-ENGINEERING RATE ANALYSIS NORMS (DRAFT)** 

FEBRUARY 28, 2022

Bio-engineering Rate Analysis Norms Rate Analysis Norms

- 1. Seed Collection and Preparation
- 2. Grass and Hardwood Cuttings Collection for Vegetative Propagation
- 3. Nursery Bed Preparation
- 4. Seed Sowing and Transplanting
- 5. Hardwood Cuttings Planting

Bio-engineering Rate Analysis Norms Rate Analysis Norms

- 6. Raised Materials Preparation for Nursery Extraction
- 7. Production of Compost and Mulch
- 8. Direct Seeding on Site
- 9. Grass Planting on Site
- 10. Turfing (Sodding)
- 11. Tree, Shrub and Cuttings Planting on Site

### Bio-engineering Rate Analysis Norms

Rate Analysis Norms

- 12. Construction of Vegetative Palisades, Brushlayers, Fascines and Live Check dams
- 13. Bamboo Planting
- 14. Site Clearance
- 15. Earthwork Excavation
- 16. Gabion Work
- 17. Uncoursed Rubble Stone Masonry Work

**Bio-engineering Rate Analysis Norms** Rate Analysis Norms 18. Brick Masonry Work 19. Cement Concrete Work 20. Stone Pitching Work 21. Coir/Jute Netting Works 22. Gabion Bolster Cylinders **Fabrication and Construction** 23. Sub-soil Drains Construction 24. Tree Guards

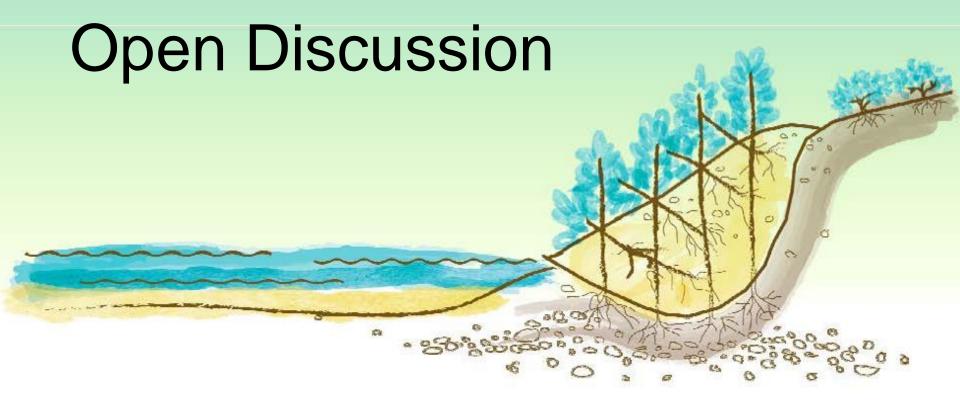
#### Bio-engineering Rate Analysis Norms

#### **Bio-engineering Rate Analysis Norms**

### Standard Specification for Bio-engineering Works

TA-9461 REG: Protecting and Investing in Natural Capital in Asia and the Pacific

Developing Bio-engineering Capacity for the Local Government Engineering Department's Operations in the Chittagong Hill Tracts, Bangladesh


**STANDARD SPECIFICATIONS FOR BIO-ENGINEERING WORKS (DRAFT)** 

FEBRUARY 28, 2022

### Standard Specifications for Bio-engineering Works

Standard Specifications for Bio-engineering Works







### Feedback on training





# Thank you for your kind attention

100

# Shankar Rai shankar.rai@gmail.com