

Karbon CCS Technology

Next-generation Carbon Capture

ASIA CLEAN ENERGY FORUM 2022

Innovative and Integrated Solutions for a Low-Carbon and Resilient Future

14–17 June

Agenda

- 1. Introduction to Karbon CCS Ltd
- 2. Karbon Technology
- 3. Example Projects under Development
- 4. Demand for CO₂ is Large and Growing
- 5. Asia Emits 53% of Global CO₂
- 6. Life of Industrial Assets can be Extended
- 7. Conclusions and Next Steps

1. Introduction to Karbon CCS Ltd

- Karbon has developed a proprietary and patented carbon capture technology.
- Its founders have been developing carbon capture technology since 2003, investing \$50 million and spending over 100,000 engineering hours.
- The technology captures CO_2 from exhaust gas, together with SO_x , NO_x , carbon monoxide, mercury, methane and particulate matter.
- It captures CO₂ from gas-fired and coal-fired power plants, steel mills, aluminium, fertiliser and cement plants, and large combustion engines such as ship engines.
- It produces high-purity CO₂ suitable for Enhanced Oil Recovery (EOR), and for a broad range of present and future industrial uses.

The all-in cost of capture is as low as \$30 per tonne of CO_2 – the lowest in the industry

The Karbon Team has Decades of Experience

Henrik Fleischer (1959)

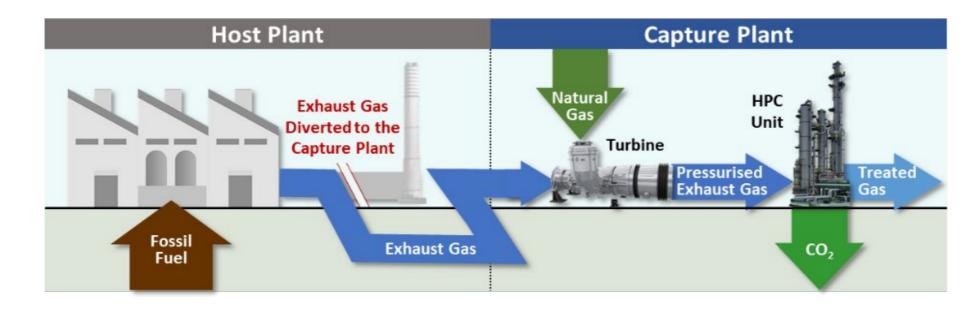
- Founder & Chairman (Karbon CCS)
- MBA from Vienna University
- Royal Norwegian Naval Academy, Commanding Officer of a missile-carrying fast patrol boat
- Norwegian rep for Mitsui & Tokyo & Singapore Shipyards,
- Shipowner

Dr. Dong-Shik Shin (1932)

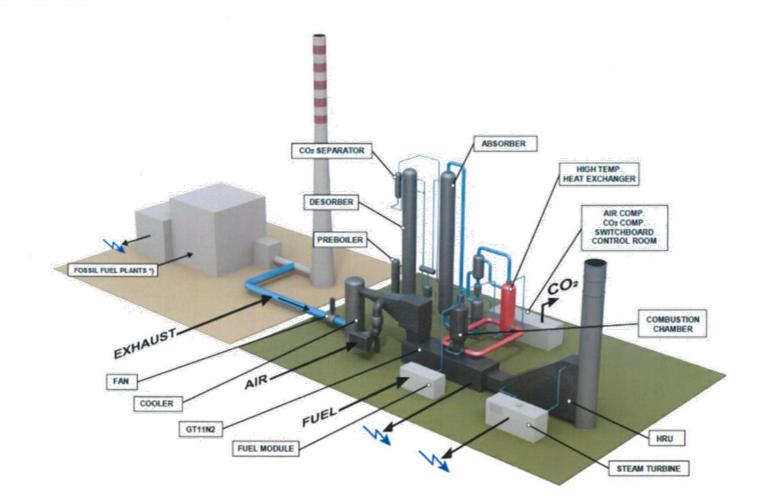
- Chairman (Karbon CCS & Karbon Korea)
- Seoul National University
- Korea's first Senior Economic Secretary
- Chairman of KOMAC

Dr. Louis van Pletsen (1960)

- CEO (Karbon CCS)
- MBA from the University of Notre Dame, USA ADP from London Business School, UK DCom Economics, South Africa
- Partner of Denham Capital Management
- Managing Director of the International Energy Group


Jun-Yeon Byun (1954)

- CEO (Karbon Korea)
- Korea University
- Vice President of KEPCO
- Chairman of Vision Power


Technical, industrial, commercial and finance executives with expertise in energy, fabrication of carbon capture plants, shipbuilding, chemical processes, turbine technology, emissions trading, and structured finance

2. Karbon Technology

- Karbon pressurises flue gas with proprietary and patented technology which uses a gas turbine.
- CO₂ is extracted with the hot potassium carbonate (HPC) process.
- All components and processes are off-the-shelf and/or have undergone extensive testing.
- Karbon capture units are installed next to host plants, and operate independently without interrupting or impairing their operations.

Main components of a pressurised Karbon plant

Footprint of a Karbon 20,000 tpd absorber is 100 m², vs. 440 m² for a corresponding amine absorber

Karbon Technology is Patented

- European Patent Office issued an International Preliminary Report on Patentability in 2020.
- Patent applications in 18 jurisdictions, including USA, EU, India, China and South Korea.
- Freedom to Operate different from all other patented carbon capture technology.
- Other patents protect Karbon Marine technology for ships and smaller power plants, including in the USA, the UK, South Korea, Norway and Germany.
- The inventors have over 20 patents in carbon capture, floating production vessels, and oil field development.

The patents provide broad and deep protection

The Principals of Karbon are Experienced with Patents

Description	Publication	Publication Number	Description	Publication	Publication Number
A carbon dioxide capture system comprising a compressor	21-Oct-21	WO2021210989	Submerged disconnectable anchor buoy and ship	24-Jun-99	WO9930963(A1)
and an expander and a method of using such system			Skip	21-Sep-98	NO983704(A)
Carbon dioxide capture system comprising a gas turbine	04-Mar-21	US20210060478	Feste av en forankringskabel til en tlp-plattform	14-Aug-98	NO983742(A)
		IN202017043480 EP3762130	Forankring av tlp-plattform	14-Aug-98	NO316018(B1) NO983741(A)
			Tlp-plattform	14-Aug-98	NO316267(B1) NO983740(A)
	05-Jan-21 12-Sep-21	CN112188925 CA3144034 AU2018412443 WO201917272	Flexible risers with stabilizing frame	21-Aug-97	WO9729944(A1)
			Production vessel with sinusoidal waterline hull	21-Aug-97	WO9729940(A1)
			Variable buoyancy sub-sea element	23-Jul-97	GB2309213(A) GB2309213(B)
Method for CO_2 separation from thermal power plant	31-Dec-15	WO2005045316			
combustion gas			Arrangement for böyelasting	19-Jun-95	NO952451(A)
Method and system for salvage of vessels	24-Jun-15	EP2885201	Connecting buoys to vessels	28-Mar-95	NO300726(B1) NO933444(A)
Thermal power plant with CO ₂ sequestration	06-Mar-15 03-Dec-12	HK1158289(A1) DK2300129(T3)	Floating heavy lift crane arrangement	12-Sep-94	NO178757(B) NO178757(C) NO930865(A)
Method and plant for capturing CO ₂	31-Dec-14	BR112013002035 WO2014207035	Anordning for utsetting og innhiving av livbaat eller lignende.	31-May-90	NO165953(B) NO165953(C) NO885334(A)
Oil sand production without CO_2 emissions	03-Jul-14 11-Jan-11	US2014182835(A1) CA2709604(A1) CA2709604(C)	Fremgangsmaate og anordning for tilveiebringelse av skyvkraft og pitch- demping for et oppankret og/eller	14-Aug-89	NO164826(B) NO164826(C) NO880608(A)
Method and plant for purification of exhaust from diesel engines	25-Feb-10 23-Feb-10	WO2010020684(A1) NO20083628(A) NO329851(B1)	dynamisk posisjonert skip.		
Method and plant for CO2 enrichment	18-Feb-10	US2010037771(A1)	Kompensatoranordnin g ved stigeroer fra havbunnen og opp til en flytende konstruksjon.	03-Nov-86	NO156299(B) NO156299(C) NO851753(A)
Fremgangsmate og anlegg for innfanging av CO ₂	03-Jul-09	NO20080022(A)	Kompensatoranordnin g ved stigeroer fra havbunnen og	04 Jun 95	NO153700(B) NO153700(C)
Low CO2 thermal powerplant Termisk kraftanlegg med lavt CO ₂ utslipp	29-Jan-09 07-May-08	US2009025390(A1) CN101175899(A)	opp til en flytende konstruksjon.	24-Jun-85	NO834766(A)
	02-Nov-07	NO20075585(Å)	Anordning for utsetting av livbaater, saerlig for offshore- konstruksjoner	09-Dec-83	NO150833(B) NO150833(C) NO821911(A)
Method and plant for transport of rich gas	17-Apr-08	US2008087328(A1)	Stabiliseringsanordni ng for en halvt neddykkbar marin	05-Nov-82	NO811504(A)
Combined storage facility for CO ₂ and natural gas	11-Jan-07	US2007006920(A1)	konstruksjon.		
Purification works for thermal power plant	11-Jan-07 19-May-05	US2007006565(A1) US7559977(B2) WO2005045316(A2) WO2005045316(A3)	Fremgangsmaate samt system for sjoesetting av et redningsfartoey	11-Aug-80	NO143839(B) NO143839(C) NO790406(A)
Low CO ₂ thermal powerplant	12-Oct-06	WO2006107209(A1)	Fremgangsmaate ved bygging av en offshore-plattform og	20-Mar-80	NO147336(B) NO147336(C)
Method and plant for transport of rich gas	04-May-06	WO2006046875(A1)	innretning til bruk ved utfoerelse av fremgangsmaaten		NO783178(A)
Low emission thermal plant	04-Aug-05	US2005166569(A1) US7328581(B2)	Flytende produksjonsanlegg.	04-Sep-79	NO147098(B) NO147098(C)
Method and plant for separation of CO_2 from the exhaust	01-Apr-04	WO2004026445(A1)			NO780745(A)
from combustion of carbonaceous fuels			Utsettingsanordning for en redningsbaat	09-May-79	NO793163(A)
System with a guide frame for petroleum production risers a guide frame for risers riser buoyancy elements and a	05-Oct-00	WO0058598(A1)	Redningssystem for dykkere under trykk fra en flytende konstruksjon	09-May-79	NO143140(B) NO143140(C) NO773819(A)
semi-submersible production platform			Anordning ved en flytende konstruksjon	09-May-79	NO773816(A)
				09-1viay-79	NO773010(A)

Technology Proven in Test Facilities

Facility____Värtan Power Plant, Stockholm, Sweden

Date 2007-2008

Result Captured 99%+ of CO_2 NO_x < 5 ppm, SO₂ \approx 0

Auditor___Norwegian Energy Institute IFE

Facility___Consol Energy Test Facility, USA

Date 2009-2011

Result Successfully captured CO₂ from 10 grades of US coal

Auditor_PFBC Environmental Energy Technology

Hot Potassium Carbonate is proven effective at capturing CO₂ and other contaminants

Karbon Technology is Superior to Amines

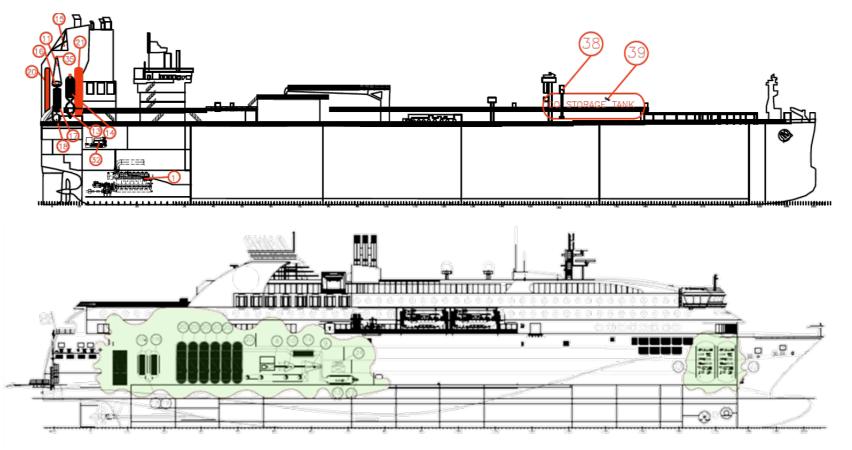
Lower cost _____ Karbon captures at \$30/tonne vs over \$50/tonne for amines. HPC absorbents are 85% cheaper than amine absorbents.

Less energy Karbon requires only 1-2 MJ of energy per kg of CO₂ captured pending application, vs 3-4 MJ per kg required by amine-based processes.

Non-toxic HPC is inert, non-toxic and requires minimal replacement over time. Amine solvents are corrosive, toxic, and possibly carcinogenic, and require replacement and destruction at additional cost.

Smaller footprint Karbon requires about 67% less land, as amine processes have more steps and require equipment to handle and incinerate used absorbents.

Faster build Karbon is simpler and uses off-the-shelf components, and can therefore be installed more rapidly than amine-based processes.


Other pollutants Karbon also eliminates SO_x , NO_x , particulate matter, CO, Hg and CH₄.

Karbon Technology Captures CO₂ from Ships as well

Capture plants will be installed during newbuilding or scheduled maintenance

General Arrangement onboard a VLGC capturing 120+ tpd of CO₂

General Arrangement of 100% decarbonisation of a car ferry

Up to 100,000 ships worldwide must soon eliminate their CO₂ emissions

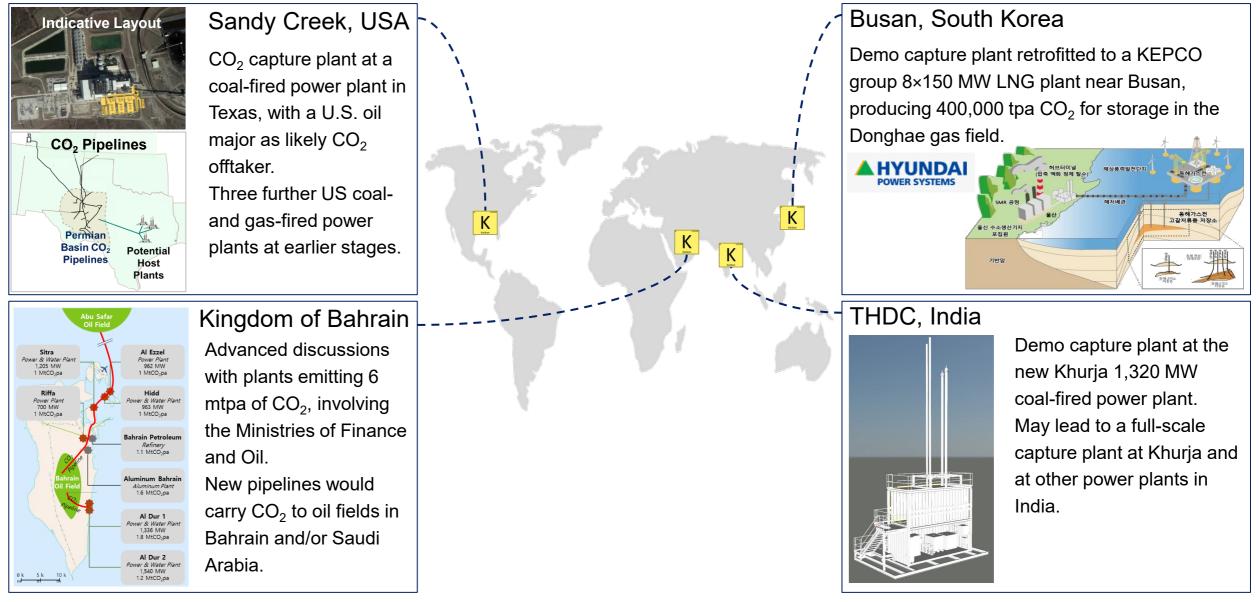
Karbon Partners are Top-Tier

SIEMENS COCTGY

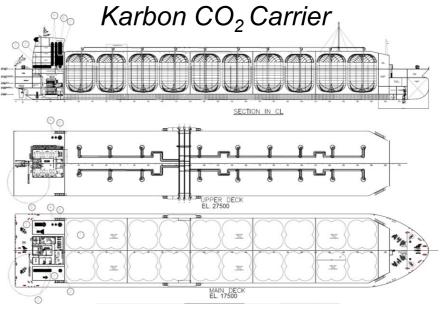
Exclusive partnership to use Siemens SGT5/6-2000E gas turbines for CO_2 capture.

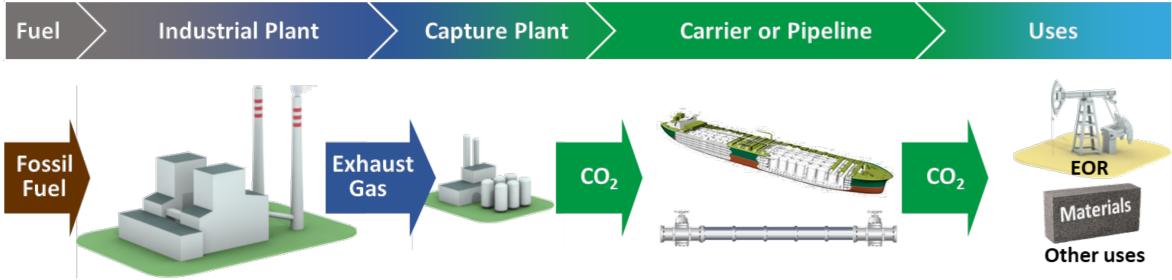
Karbon is discussing the use of GE turbines for the Karbon process.

Karbon is in discussions with a U.S. oil major for long-term purchase of CO_2 .

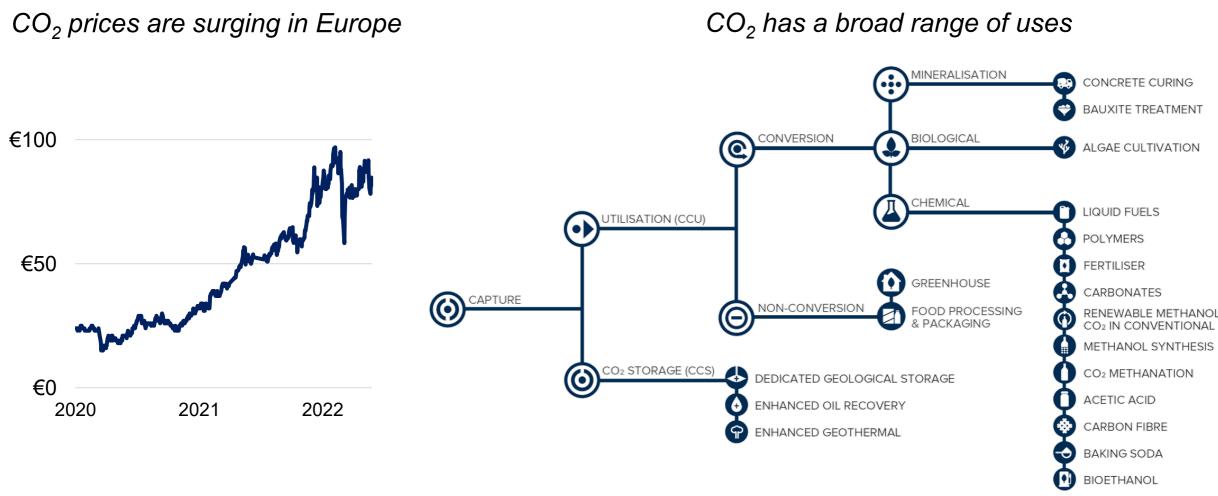


BofA is advising Karbon and introducing potential counterparties.


Karbon works closely with EPC firms for land-based capture plants and for marine and offshore solutions on existing or newbuilding ships.

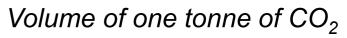

3. Example Projects under Development

CO₂ is Transported by Pipeline and Ship


- About 8,000 km of 20-60 cm CO₂ pipelines operate worldwide at 100-150 bara.
- Karbon is developing a dual LNG-CO₂ carrier e.g.:
 - Carry LNG from Persian Gulf to South Korea
 - Carry CO₂ on return to Saudi Aramco for EOR

4. Demand for CO₂ is Large and Growing

Used for EOR and as feedstock for methanol, fertiliser, animal feed, and construction materials

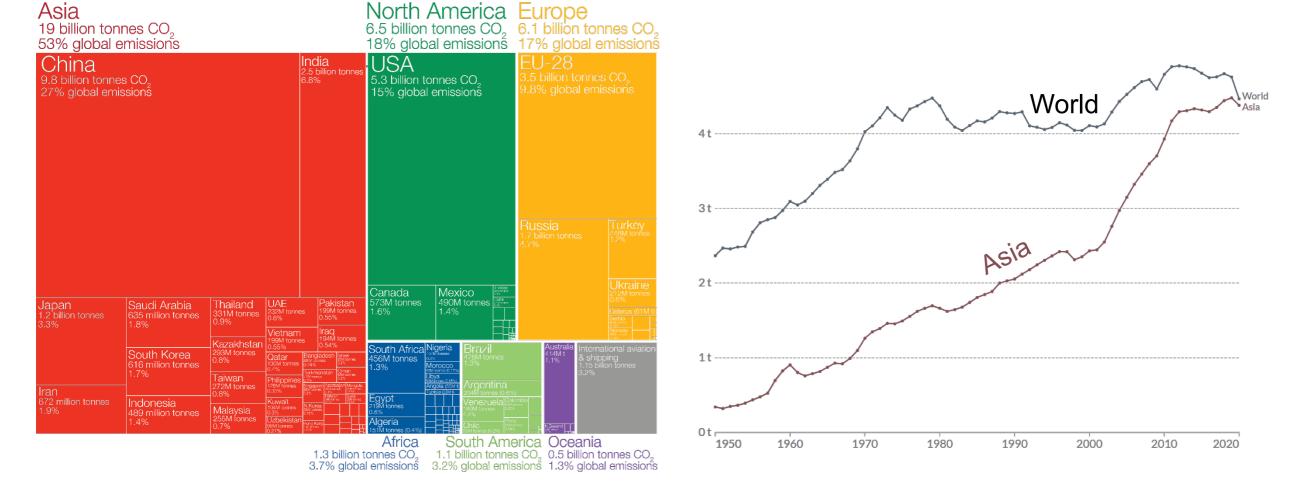


CO₂ is a **Profitable Commodity**

• One tonne of CO₂ captured with Karbon and used for EOR:

Cost of capturing 1 tCO₂ \$30* Additional oil production from 1 tCO₂ 3 barrels × Additional revenue = 3 bbl × 113/bbl \$339 - Marginal cost = 3 bbl × 13.29/bbl (\$40)

- = Profit per one tonne of CO₂_____\$299
- Once CO_2 is produced for \$30 per tonne, it will be:
 - A mainstream commodity with multiple uses
 - Feedstock for fertilisers, foodstuffs and concrete.
 - Widely traded, e.g. by the Trafigura Carbon Trading desk.
- Food-grade CO_2 sells for \$400 per tonne.

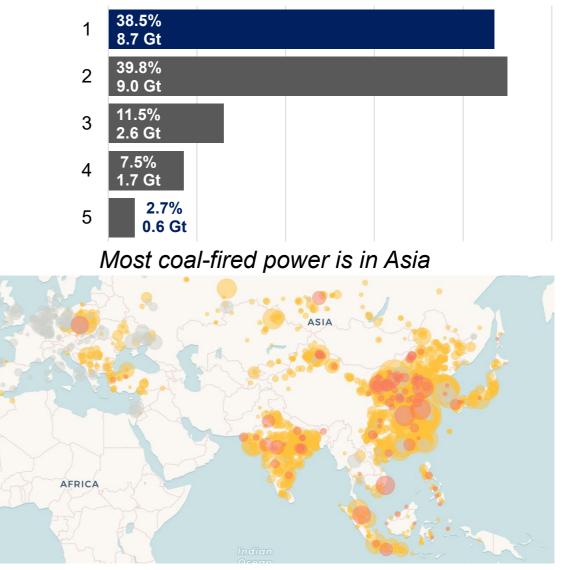


1,000 MW power plant emits: 7.0m tpy CO_2 (coal-fired) 3.5m tpy CO_2 (gas-fired)

5. Asia Emits 53% of Global CO₂

China emits 28% of Global CO₂

Asia has caught up to the world in CO_2 emissions per capita


CCS is Critical for Reducing Emissions

- CCUS at coal-fired generation plants greatly reduces emissions from electricity generation.
- Hypothetical example of installing CCUS at coal-fired power plants in Asia:
 Assumed generation capacity_____50,000 MW
 CO₂ Captured_____300 mtpy
 Reduction in CO₂ from electricity_____3.5%

Capital cost of CCUS_____\$35 billion

- Coal plants with CCUS are zero-carbon baseload, allowing more wind and solar onto the grid.
- CCUS saves the vast cost of decommissioning the coal-fired power plants.

CO₂ Emissions by ADB Members

6. Life of Industrial Assets can be Extended

- Asian institutions and corporations have extensive exposure to industrial assets emitting CO₂.
- They risk significant write-offs if such assets were decommissioned early to reduce emissions.
- With Karbon Technology capturing substantially all CO₂, such assets would be zero-carbon for their economic lives.
- Karbon cleans any flue gas, e.g. power plants, refineries, steel mills, cement plants and 100,000 ships.

Avoid write-offs and impairment from early decommissioning

7. Conclusions and Next Steps

- 1. Karbon technology uses proven components and is EPC-ready.
- 2. It captures 90-98% of CO_2 and other pollutants at the lowest cost, allowing industrial plants to serve out their operating lives without emissions.
- 3. Emissions goals for Asia can only be met if carbon capture is extensively deployed.
- 4. Asia can extend the life of its asset base by facilitating CCS technology.

Just capture it

Many thanks for inviting Karbon

ASIA CLEAN ENERGY FORUM 2022

Innovative and Integrated Solutions for a Low-Carbon and Resilient Future

14–17 June

