
Planning and Design of Smart Infrastructure for Biodiversity Protection

Soil Bioengineering, Hydrology and Drainage in Linear Infrastructure

Drainage Structures for Hydrology and Wildlife Movement

220 Km. of Roads and Vegetation

Soil Bioengineering and Biotechnical Slope Stabilization ADB

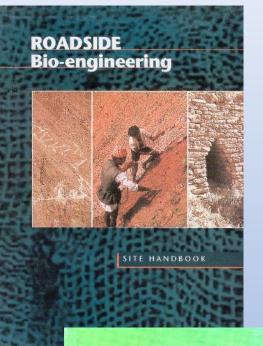
• <u>Soil Bioengineering-</u> A technology that uses integrated ecological principles to assess, design, construct, and maintain living vegetative systems to repair damage caused by erosion and slope failures

• <u>Biotechnical Slope Stabilization-</u> A technology that combines the use of vegetation with other physical structures, such as vegetated gabions, rock walls, or vegetated reinforced soil slopes to create structures for slope stabilization.

Soil Bioengineering in Nepal

ROADSIDE Bio-engineering

SIAN DEVELOPMENT BAN


John Howell, DOR, DFID

BIOENGINEERING

INFRASTRUCTURE

FOR GREEN


REFERENCE MANUAL

BIO-ENGINEERING INFORMATION

RATE ANALYSIS NORMS (INTERIM) STANDARD SPECIFICATIONS (INTERIM) LISTS OF SPECIES AND SUPPORTING INFORMATION

Environmental Management (2013) 51:354-364 DOI 10:1007/s00267-012-0003-7

PROFILE

Soil Bioengineering Application and Practices in Nepal

Yam Prasad Dhital · Rijan Bhakta Kayastha · Jiancheng Shi

Received: 22 December 2011/Accepted: 12 December 2012/Published online: 22 December 2013 \circledast Springer Science+Business Modia New York 2012

Abstract The small mountainous country Nepal is situared in the central part of the Himalayas, Its elimate varies essential.

Use of plants in Soil Bioengineering

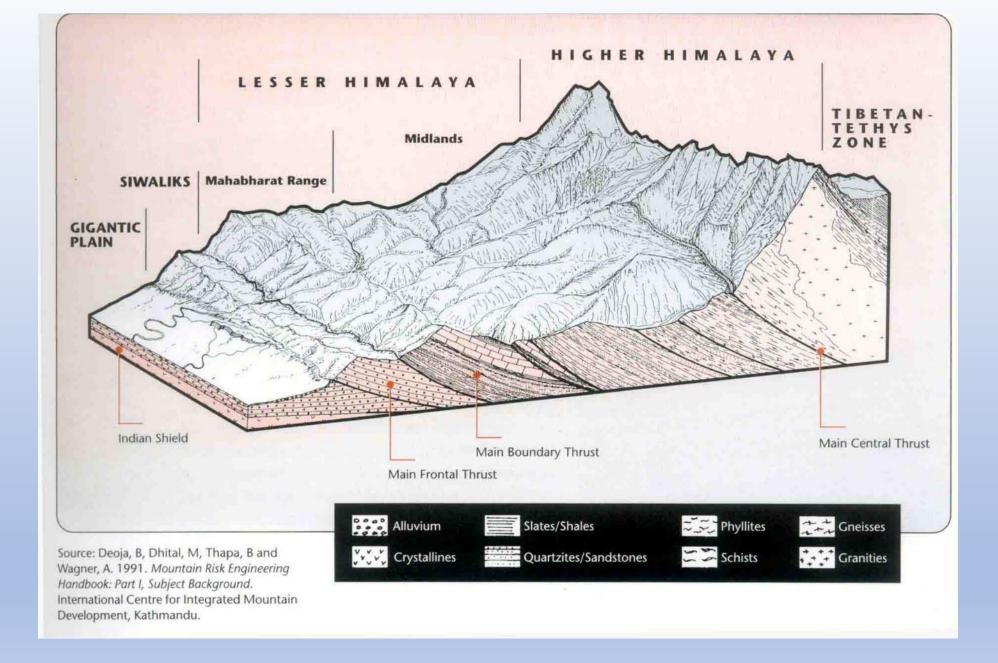
Selection of species appropriate for each Soil Bioengineering technique

Method of propagation, biological and social consideration, establishment, vigor growth and persistence, site suitability, potential value to local farmer, availability.

Plant Ecology of Nepal

Study of plants in relation to the environment in which they grow. Governing factors: the availability of moisture, temperature and the amount of sunlight; and the availability of nutrients. These are in turn determined in Nepal by altitude, aspect, other factors controlling the distribution of rainfall and site moisture, geology, geomorphology and soils.

Dr. Tara Nidhi Bhattarai, NDRI


The north facing slope is well shaded and therefore retains moisture, making it excellent for plant growth. In contrast the south facing slope across the valley is much drier and the land is consequently less productive. Drought tolerant species are desirable!

North facing slope

South facing slope

Vegetation type goes on changing from West to East

Details of the Main Soil Bioengineering Species

Grasses: Amliso, Babiyo, Dhonde

Dubo: Dubo, Kans, Katara Khar, Khar, Khus, Narkat, Padang Bans, Phurke, Sito, Tite Nigalo Bans

Shrubs and small trees: Areri, Assuro, Bainsh, Bhujetro, Dhanyero, Dhusun, Kanda Phul, Keraukose, Kettuke, Namdi Phul, Saruwa/Bihaya, Simali, Tilka

Large trees: Bakaino, Chilaune, Dabdabe, Gobre Salla, Kalo Siris, Khanyu(Khosro), Khayer, Lankuri, Painyu, Phaledo, Rani (Khote) Salla, Rato Siris, Seto Siris, Sisau, Utis

Large clumping bamboos: Choya/Tama Bans, Dhanu Bans, Kalo Bans, Mal Bans, Nibha/Ghopi/Lyas Bans, Tharu Bans

SPECIES SUITABLE FOR SHRUB AND THEE SEEDING

Main species used for direct seeding

Botanical name	Altitude	Sites
	range	summary
Acacia pennata	500 - 1500 m	Hot and dry; harsh
Butea minor	500 - 1500 m	Hot and dry; harsh
Indigofera atroturpurea	Terai - 2000 m	Hot and dry; harsh
	Acacia pennata Butea minor	rangeAcacia pennata500 - 1500 mButea minor500 - 1500 m

Main species used for broadcasting.

Local name	Botanical name	Altitude range	Sites summary
Shrubs			
Areri	Acacia pennata	500 - 1500 m	Hot and dry; harsh
Bhujetro	Butea minor	500 - 1500 m	Hot and dry; harsh
Keraukose	Indigofera atroturpurea	Terai - 2000 m	Hot and dry; harsh
Trees			
Bakaino	Melia azedarach	Terai - 1800 m	Hot and dry; harsh
Gobre salla	Pinus wallichiana	1800 - 3000 m	Dry; varied
Khanyu (khosro)	Ficus semicordata	Terai - 2000 m	Hot and dry; varied
Khayer	Acacia catechu	Terai - 1000 m	Hot and dry; harsh
Rani (khote) Salla	Pinus roxburghii	500 - 1950 m	Hot and dry; varied
Sisau	Dalbergia sissoo	Terai - 1400 m	Varied
Utis	Alnus nepalensis	900 - 2700 m	Varied and moist

TABLES FROM HOWELL

SPECIES SUITABLE FOR LARGE BAMBOO PLANTING

DIA ENABLEEDINA TEALINIAUEA

Local	Botanical name	Altitude	Sites
name		range	summary
Traditional pla	anting method only		
Mal bans	Bambusa nutans	Terai - 1500 m	Dry/varied
Nibha/	Ampelocalamus	1200 - 2000 m	Varied
ghopi/	patellaris		
lyas bans			
Tharu bans	Bambusa nutans	Terai - 1500 m	Varied
Either tradition	nal planting method or roote	ed single-node culm	cutting method
Choya/	Dendrocalamus	300 - 2000 m	Moist
tama bans	hamiltonii		
Dhanu bans	Bambusa balcooa	Terai - 1600 m	Varied
Kalo bans Dendrocalamus hookeri		1200 - 2500 m	Varied

SPECIES SUITABLE FOR PLANTED GRASSES: RANDOM PLANTING

Local name	Botanical name	Altitude range	Sites summary	
Amliso	Thysanolaena maxima	Terai - 2000 m	Varied	
Babiyo	Eulaliopsis binata	Terai - 1500 m	Hot and dry	
Dhonde	Neyraudia reynaudiana	Terai - 1500 m	Hot and dry	
Kans	Saccharum spontaneum	Terai - 2000 m	Hot and dry; moist	
Katara khar	Themeda species	Terai - 2000 m	Varied	
Khar	Cymbopogon microtheca	Terai - 2000 m	Hot and dry; varied	
Khus	Vetiveria lawsoni	Terai - 1500 m	Varied	
Narkat	Arundo clonax	Terai - 1500 m	Hot and dry; varied	
Phurke	Arunduella nepalensis	700 - 2000 m	Varied; stony	
Sito	Neyraudia arundinacea	Terai - 1500 m	Varied	

ROADSIDE BIO-ENGINEERING

1

g e

10

Possible problems in each sites (pictures).

Soil Bioengineering use depends on: Elevation, eco-climatic zone, precipitation, aspect, soil thickness and its fertility, availability of species (nursery), etc.

NHP Highway Applications

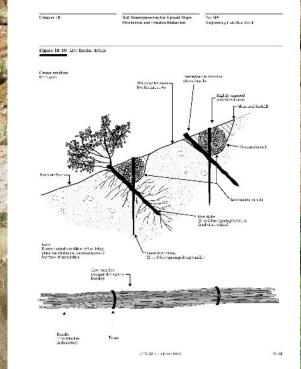
Basic Applications

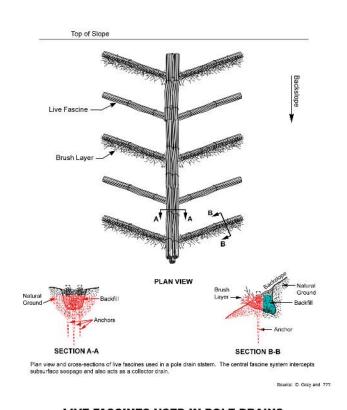
Erosion Control & Drainage

- Grass Carpet, Turfing
- Fascines
- Fascine Pole Drains

Slope Stabilization

- Live Stakes
- Brush Layering
- Live Slope Grating
- Vegetated Walls
- Vegetated Reinforced Soil Slopes


Erosion Control & Drainage Turfing & Clumping Grasses

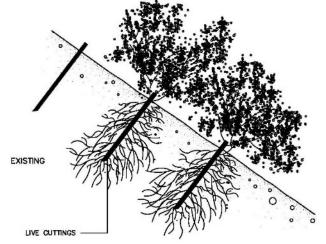


Fascines

1923 I A

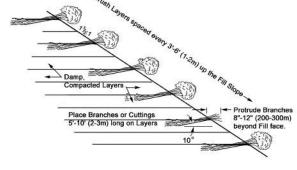
Fascine Pole Drains

LIVE FASCINES USED IN POLE DRAINS


CHECK DRAWING 17-08-08

Slope Stabilization

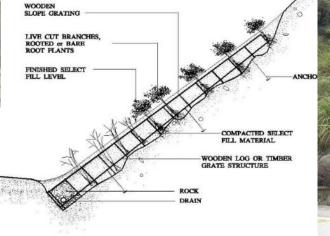
Live Stakes



Brush Layering

Plan View of Large Fill Slope Brush Layering

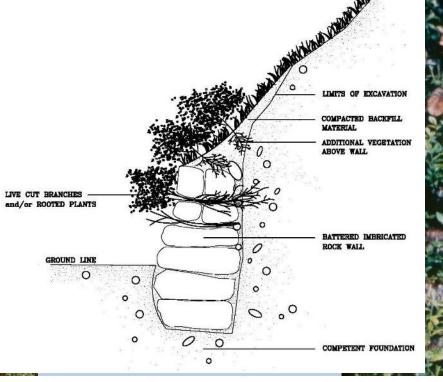
► 8"-12" (200-300m)


5'-10'

(2-3m)

Cross-Section of Large Fill Slope Brush Layering

Live Slope Grating



Vegetated Walls

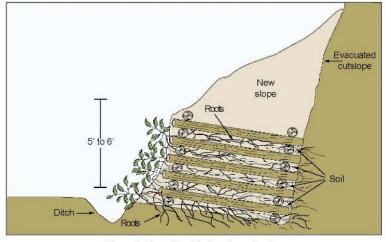
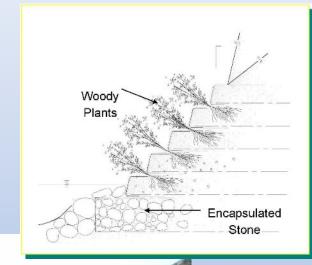



Figure 8-Live cribwall battered construction.

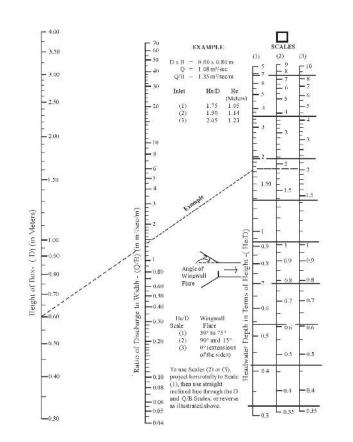
Vegetated Reinforced Soil Slopes

Back to Hydrology and Drainage

FUNCTIONS OF DRAINAGE STRUCTURES

- Accomodate and Disperse Surface Drainage
- Pass the Design Flow dfrom Rivers and Streams (25-100 Year Events)
- Accommodate or Pass Sediment and Debris
- Reflect and Design For Increased Flows from Climate Change
- Provide Wildlife Crossings and promote wildlife Movement and Connectivity

DRAINAGE DESIGN TOOLS


Hydrology & Hydraulics • Rational Method Dicken's Formula . • Manning's Formula - Guaging Stations. 2-Statistical Methods • Riprap/Gabion Design Use of Filters and Geotextiles

CLIMATE CHANGE PROJECTIONS

- Temperature records show a warming trend, with projected increases of between 1.8 and 5.8 degrees (Centigrade) by the 2090s
- Annual precipitation is projected to decrease by 10 to 20 percent, with dryer winters but wetter monsoon summers
- Extreme flow events, increased rainfall intensities, and climate variability increased flood design recurrence
- intervals.
- Sequences of drought and storms, as well as warmer
- temperatures-more fires, increased erosion, more
 - landslides.
- Increased climate variability and more extreme conditions.

DETERMINING SIZE OF THE STRUCTURE

Figure 8.7c Headwater depth and capacity for concrete box culverts with inlet control (Adapted from FHWA, HDS5, 1998)

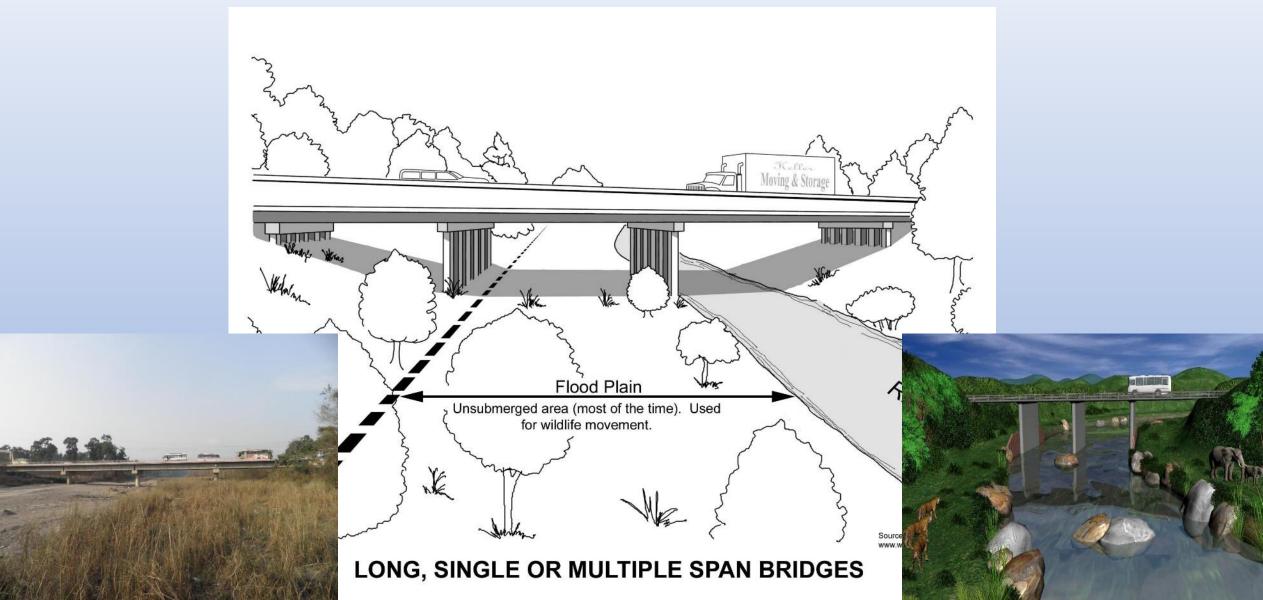
LOVEVILUE ROADS BMP::86

WILDLIFE UNDERPASS SIZE CLASS GUIDELINES

Underpass Target Wildlife Size Class Species from BBA	T	Minimum Dimensions				
	Alter and a second s	ADB Guidelines ¹		Nepal Guidelines ²		
	Width (m)	Height (m)	Width (m)	Height (m)		
Very Large	Asian elephant	12.0	5.5	8.0	6.5	
Large	Tiger Rhino Sambar Common leopard Blue bull	10.0	4.0	4.0 to 5.0	4.0 to 5.0	
Medium	Spotted deer Barking deer Jungle cat Leopard cat Hyena Wild boar	6.0	3.0	4.0 to 6.0	3.0 to 3.5	
Small	Small Indian civet Large Indian civet Herpetofauna	2.0	2.0	N/A		Aug Con

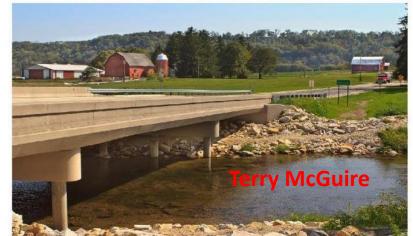
Bridges Surface Drainage

Culverts Fords/Drifts



A somewhat natural stream inside a culvert for fish passage

IDEAL WILDLIFE UNDERPASS- A BRIDGE



(I-35 Straight River, Steele County MN)

(County 16 Fillmore County MN)

Movement through Bridges

Movement Through Culverts

Barriers in Bridges and Culverts

Lack of Space or Capacity

Other Barriers for Movement of Wildlife

Barriers in Box and Inlet Structures

Barriers/Traps in Ditches and Canals

POOR

OK

Conclusions

-Both good vegetative management and drainage design can help wildlife and facilitate wildlife movement/connectivity.

-Adequate size is critical in drainage structures to both pass flood waters plus debris/sediment, and

-Structure size adequate to pass a wide variety of wildlife or target species.

THANK YOU!!

Gordon R. Keller, PE, GE Geotechnical Engineer GENESEE GEOTECHNICAL (Formerly U.S. Forest Service) gordonrkeller@gmail.com

Disclaimer: The views expressed on this document are those of the author/s and do not necessarily reflect the views and policies of the Asian Development Bank (ADB) or its Board of Governors or the governments they represent. ADB does not guarantee the accuracy of the data included in this document and accepts no responsibility for any consequence of their use. By making any designation of or reference to a particular territory or geographic area, or by using the term "country" in this document, ADB does not intend to make any judgments as to the legal or other status of any territory or area.