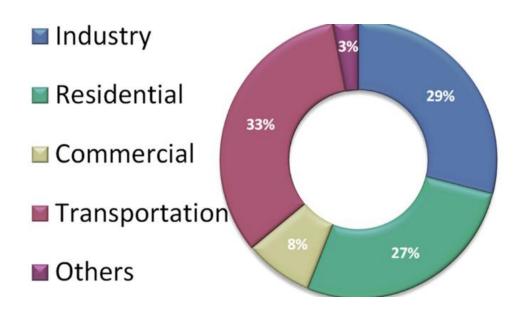
Webinar 2 - Disease Resilience and Energy Efficiency

Disease Resilient nd Energy-Efficient Centralized Air-Conditioning Systems: An Overview

ADB

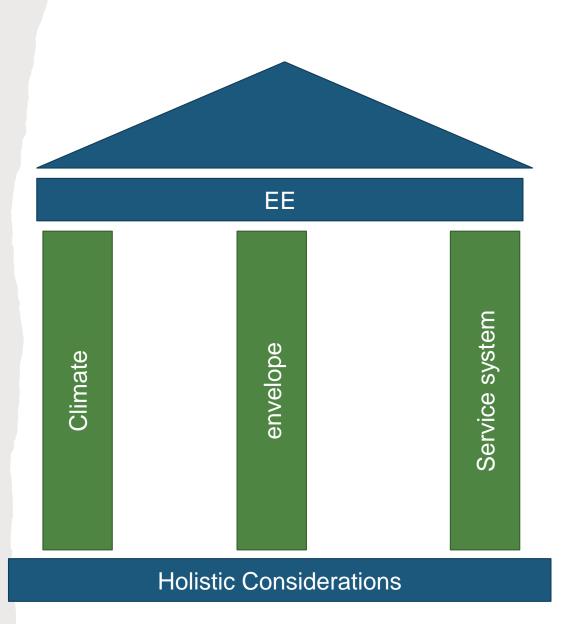
Dr. Yanping Zhou ADB TA 6563


Disease Resilient and Energy-Efficient CAC Systems

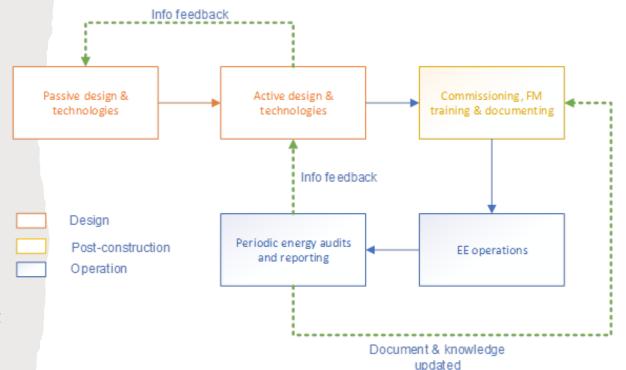
- Introduction to Building Energy-efficiency
- Energy efficiency strategies
- Disease resilience of CAC system
- Summary

Introduction to Building Energyefficiency

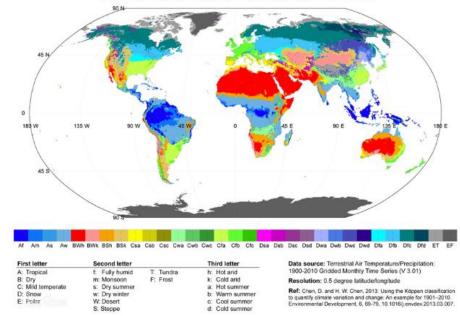
 The building section accounts for more than 30% of primary energy consumption around the world



Source: Laustsen, Jens. Energy Efficiency Requirements in Building Codes, Energy Efficiency


Introduction to Building Energyefficiency

- Three Pillars of energy efficiency
- To improve building energy efficiency, all the three aspects should be integrally considered


- Methodology :
- Energy efficiency in buildings is a life-cycle process from design, construction, and operation, of which the design phase is very important, and retrofitting of building structure and mechanical systems usually requires significant cost and effort.
- It is a topic that needs to be addressed throughout all phases of a building's life cycle

- Climate :
- World climates according to Köppen's Classification

World map of Köppen climate classification for 1901-2010

Source: Deliang Chen, Hans Weiteng Chen, Using the Köppen classification to quantify climate variation and change

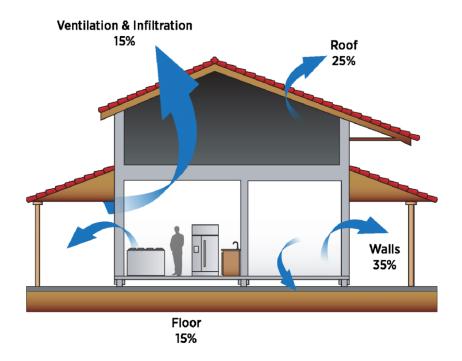
- Climate :
- A good technology roots in a local climate condition, that is however developed according to state of art norms acknowledged by the practitioners in building industry
- Map of Köppen's Classification

Major group	Criteria	
A: Tropical	An average monthly temperature higher than 18°C (64.4°F.)	
	Annual precipitation exceeds 1,500 millimeters in this zone.	
	High humidity levels and warm temperatures result in frequent,	
	almost daily occurrences of cumulus or larger cumulonimbus cloud	
	formations.	
B: Dry	Dry The complete absence or extremely low levels of annual precipitat	
	The very dry atmospheric conditions are the result of the combined	
	evaporation and transpiration levels which in total exceed the total	
	amount of precipitation.	
	Vegetation is sparse or completely absent as a result of the dry	
	climate with insufficient precipitation.	
C: Temperate	Warm summers with high levels of humidity and mild winter seasons.	
	The warmest month is at least 10°C (60°F) or higher, while the	
	coldest month is lower than 18°C (64.4°F) but higher than -3°C	
	(26.6°F).	
D: Continental	tal The average temperature of the warmest month is above 10° C (50°	
	while the coldest month is below -3° C (26.6°F).	
E: Polar	The warmest month of the year is below 10°C (50°F).	
	Extremely dry, with annual precipitation of less than 25 cm (10	
	inches).	

- Climate :
- Most of the DMC countries are located in tropical and temperate climates

Major group	DMC countries
A: Tropical	Afghanistan; Armenia; Azerbaijan; Bangladesh; Cambodia; Cook Islands; Federated
	States of Micronesia; India; Indonesia; Kiribati; Lao People's Democratic Republic;
	Malaysia; Maldives; Marshall Islands; Myanmar; Nauru; Niue; Palau; Papua New Guinea;
	Philippines; Samoa; Singapore; Solomon Islands; Sri Lanka; Thailand; Timor-Leste;
	Tonga; Tuvalu; Vanuatu; Viet Nam.
B: Dry	India(middle); Kazakhstan; Mongolia; Pakistan; Turkmenistan; Uzbekistan.
C: Temperate	Bhutan; Brunei Darussalam; Georgia; Fiji; Hong Kong, China; Nepal; People's Republic of
	China(south); Republic of Korea; Taipei, China; Tajikistan.
D: Continental	Kyrgyz Republic; People's Republic of China(north).

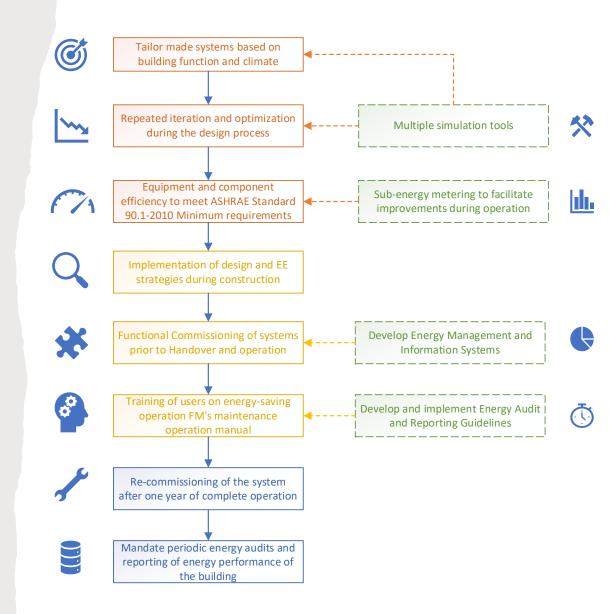
Source: Yanping Zhou, Assessment report on energy-efficiency, 2021



Source: https://thumbs.dreamstime.com/

• Building envelope contributes to 60-75% of the heat gain/loss

• Thermal performance depends on shape factor, heat transfer, ventilation, air tightness



Source: Laustsen, Jens. Energy Efficiency Requirements in Building Codes

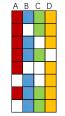
• Actions in different phases to achieve an energy efficiency target

• ASHRAE 90.1-2010 gives the definition of building envelope parameters and equipment efficiency in several climatic environments

 Cooling and Heating Systems

• Renewables: natural source, implementation and maintenance costs, incentives, local regulations, and characteristics of the energy profile.

- Solar
- Wind
- Wave
- Geothermal, etc
- Hybrid systems
- Renewables integrated with envelope
- Energy planning on a larger scale



Source: https://www.lowcarbonbuildings.org.uk/

- Energy efficiency strategies
- Some can be used nearly • always, but more require careful assessment

Energy demand control via passive design

Orientation and shape factor first steps to optimize the buildings Microclimate environment use tress, terrain, surrounding structures to improve EE Roofs, facades, glazing/Window-wall-ratio case-by-case study required Shading exterior shading design is the priority Airtightness critical for fresh air conditioning load Thermal storage envelope dry and large diurnal range area Natural day-lighting recommended whenever possible Natural ventilation not recommended for hot and humid areas

Comments

Use energy-efficient mechanical system

Internal gains		
	Energy saving appliances	recommended whenever possible
	LED lighting	recommended whenever possible

Energy, heating & cooling source system

BCHP	natural gas, combined heat+cool+power demand
Fuel Cell	small facility possible
Ice storage	when electricity rate favorable overnight
Waste-Heat Absorption Heat Pumps	helpful when there is waste heat available nearby
Ground (water) source heat pump	heat should be balanced for the earth
Water loop heat pump	simultaneous heat and cool, large span, like malls
Condensing heat recovery of chiller/HP	recovered heat for domestic hot water
Evaporative cooling system	dry and large diurnal range area

Distribution sub-system

Fresh air heat recovery	particularly effective in humid areas
Desiccant dehumidification system	effective when low-grade heat available
VFD of fans and pumps	recommended whenever possible

HVAC system terminals

CO2 controlled ventilation	offices /other spaces where occupancy varies widely
Radiant systems, e.g. capillary ceiling, radiant floor	condensation control is vital
DOAS stand-alone fresh air systems	particularly effective in humid areas
Displacement ventilation	large and tall spaces

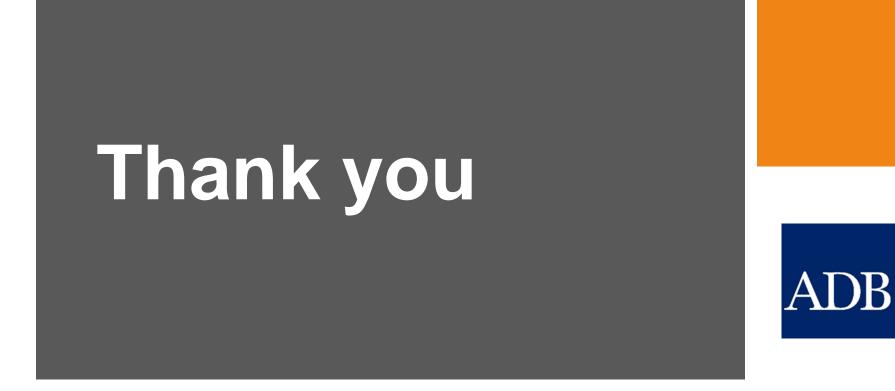
A: Tropical
B: Dry
C: Temperate
D: Continental

Disease resilience of CAC system

• Design of air conditioning systems should adapt to pneumonia and other respiratory infections

• Large open offices should be renovated quickly to flexible partitions during a pandemic

Source: https://www.appliedworkplace.co.uk/blog/office-partitions-flexible-office-solutions/


Summary

- Reducing carbon emissions has important implications for the current rapidly deteriorating global climate
- In DMC countries, a 20% improvement in energy efficiency over local standards is often easy to achieve
- The design should also integrate a special chapter to cover its disease resilient capabilities, which only makes sense when the flexibility can be included in the very beginning of new buildings.

Source: https://img.thedailybeast.com/

ADB TA 6563 _ Disease Resilient and Energy-Efficient Centralized Air-Conditioning Systems