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Outline of the knowledge sharing

MELBOURNE

HVAC System modelling for control
Why do it?
What should it do?

How it get done?
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IPCC Representative Concentration Pathways (RCPs)

(https://climatenexus.org/climate-change-news/rcp-8-5-business-as-usual-or-a-worst-case-scenario/)
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Conditioning air

THE UNIVERSITY OF
MELBOURNE

m Air conditioning provides closely controlled indoor
environment necessary for the comfort, working
efficiency and well being of a building’s occupants.

m All year round: Ventilating (air movement for odour
control)

» Winter: Heating and Humidification
s Summer: Cooling and Dehumidification
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Ventilating

THE UNIVERSITY OF
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= Ventilating is defined as the supplying or removing
of air from a space by mechanical or/and natural
means.

m [t serves two purposes:

» Addition or removal of heat and/or humidity from
occupied spaces

= Supply of fresh air to meet health requirements
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Deposition of inhaled aerosols in
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Psychrometric Chart
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Manila

THE UNIVERSITY OF

TR Psychrometric chart plotted using Climate Consultant 6.0.16 (Liggett & Milne 2020)
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Indoor air environment
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MELBOURNE (Aye 2021)
s The indoor air environment is a Ocoupants
complex dynamic system
= Main physical transfer phenomena: Building ndoorAr ™ Building
Envelope Environment Fitouts
s Heat transfer ¢ ¢
s Mass transfer - oy
. Outdoor HVAC
s Momentum transfer (air flow) Environment System - = Mass

s Continuous interaction between

outside and indoor environment = Discrete, non-linear & highly
constrained characteristics

s Human intervention or control
and parameters
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A typical chilled-water HVAC system

MELBOURNE (Li et al. 2013)
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Why Modelling for Control

MELBOURNE

m Efficient operation of an HVAC system
depends on
= Control system and
s Optimisation parameters.

m Control algorithm requires accurate
modelling of the system and implementation
of appropriate optimisation techniques.
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Why is it important?

MELBOURNE

m Efficient operation of an HVAC system <-
depends on its control system.

= System modelling is very important for
the control, if you can’t accurately model
the system, you can’t control it well
(Huang 2021).
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Proportional, Integral, Derivative (PID) Control
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Model Predictive Control (MPC)
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MELBOURNE (AFDOld et al. 2009)
control measurements
> system
inputs
MPC controller
control | optimization
actions
-
L model - objective,
prediction constraints
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Models

/

MELBOURNE

Model
N Y,

Outputs

System model = Whole of sub-system and
component models

Component model = Series of relationships
between output and input variables
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Component models

MELBOURNE

s Chiller, cooling tower, building zone, air
handling unit (AHU), mixing box, splitting
box, heating coil, cooling coil, humidifier, fan,
pump, duct, sensor, damper, valve, etc.
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Categories of HVAC system modelling

MELBOURNE

= Phenomenological or physics-based (or white
box/mathematical/forward), deductive, in
general continuous and deterministic

s Data-driven (or black box/empirical/inverse),
inductive, in general discrete and
deterministic or stochastic

s Gray box (or hybrid).
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Applications of HVAC system models

MELBOURNE

= Phenomenological -> developed by applying laws
of conservation and primarily use in design stage

» Data-driven -> developed through a process of
collecting the system performance data from an
existing system; suitable for performance
improvements and control

m Gray box (or hybrid).
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Phenomenological

Data-driven

Gray box

Lu Aye, FEIT

Strengths and Limitations

(Extracts from Afroz et al. 2018)

Strenghts

Ease of analysis, Robust
generalisation capability, Less
training data required,

High accuracy, simple structure ->
applicable for real-time operation and
control, No need to have a good
understanding of the system physics,

High accuracy, Easy generalization
capability, Less complexity and low
computational cost, Can deliver good
control performance.

Modelling for Control

Limitations

Uses many mathematical equations,
Detailed modelling is very complex to
implement in real time, Large number
of assumptions reduces accuracies,

Training data requirement, Poor
generalization capability, Some key
parameters or may not be considered,
Some models lack validation,

Involves the implementation of both
governing equations and a large amount
of training data, Large number of
assumptions reduces accuracies,
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A data-driven model example

THE UNIVERSITY OF

MELBOURNE (Stewart et al. 2017)
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Model structure
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MELBOURNE (Stewart et al. 2017)

Simulation &
Optimisation

Low load chiller

Simulation of chilled energy [kW]
Cooling Load water plant (Chillers &
——
[kWr] Pumps)

*F i High load chiller 1
ans exclude cray kW]

/ i High load chiller 2

Shuffled complex Objective function: energy [kW]
evolution algorithm > Plant equipment energy
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The End.

Contact: lua@unimelb.edu.au
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