This is not an ADB material. The views expressed in this document are the views of the author/s and/or their organizations and do not necessarily reflect the views or policies of the Asian Development Bank, or its Board of Governors, or the governments they represent. ADB does not guarantee the accuracy and/or completeness of the material's contents, and accepts no responsibility for any direct or indirect consequence of their use or reliance, whether wholly or partially. Please feel free to contact the authors directly should you have queries.

A Case for a Systems Approach to EdTech

24 August 2021

Akanksha Bapna, Susan Nicolai, Christina Meyers, Arnaldo Pellini, Namrata Sharma, Samuel Wilson

@GlobalEdTechHub

edtechhub.org

EdTech is complex

- 1. High context dependency
 - CAL programs have differential impact (math/language, student quartile etc.)
- 2. Complex causal pathways
 - Access failed to improve outcomes (gender, socioeconomic backgrounds, integration of tech, teacher professional development etc.)
- 3. Scale and sustainability challenges
 - Complex set of factors impacting scale and sustainability (government/market, policy, ecosystem etc.)

Are linear approaches enough?

Systems thinking examines problems holistically

Conventional Thinking	Systems Thinking	
The connection between problems and their causes is obvious and easy to trace.	The relationship between problems and their causes is indirect and not obvious .	
Others, either within or outside our organization, are to blame for our problems and must be the ones to change.	System actors have significant control or influence in solving them through changing our behavior.	
A policy designed to achieve short-term success will also assure long-term success.	Most quick fixes have unintended consequence s: they make no difference or make matters worse in the long run.	
In order to optimise the whole, we must optimise the parts.	In order to optimize the whole we must improve relationships among the parts.	
Many independent initiatives should be aggressively tackled simultaneously.	Only a few key coordinated changes sustained over time will produce large systems change.	

The EdTech network

Summary of the EdTech network

- High interconnectedness
- Central nodes
 - Policymakers, government
 - School leaders, teachers, students
- Influential nodes
 - Policymakers, employers
 - Accreditation bodies!
- Limitations
 - 1 mode network
 - Theoretical
 - Needs validation

Thank you!

Annex Slides

Limitations of EdTech frameworks

- Linear approach
- Not all take into account context
- Very specific purpose
- Limited focus (macro/meso/micro)
 - Macro: SABER-ICT, UNESCO
 - Meso: Holistic Integration Framework, ICT4E
 - Micro: TPACK
 - Multi-level: Omidyar

Systems approaches provide new tools and insights for research

- Allow for the structuring of many variables into meaningful patterns
- Enable the observation of interactions and patterns not necessarily visible using linear approaches
- Add a repertoire of mathematical tools such as game theory, linear programming and matrix theory to traditional research methods (Stowe, 1973)

Applying systems approaches to EdTech research

• Redefine research questions

 What governance structures do we need to create to improve data use in education? would become: How can we enhance and utilise the structures, resources, and processes already present to improve the equity and effectiveness of education?

• Redesign research methods

Causal Loop Diagrams, Social Network Mapping

Additional analytical methods

• Game theory, Matrix theory etc.

• Possible systems theories for EdTech

- General Systems Theory (Bertalanffy, 1969)
- Ecological Systems Theory (Bronfenbrenner, 1977)
- Complexity Theory (Mason, 2008)

Mapping the EdTech network: Methodology

- 1. Literature review to identify 17 EdTech frameworks
- 2. Review of education stakeholder literature
- 3. Codebooks of stakeholder characteristics and interactions developed from literature and expert inputs
- 4. Coded EdTech frameworks using codebooks
- 5. Generated code co-occurrence matrix
- 6. Created knowledge graph of EdTech stakeholders

Stakeholder code correlation matrix

Mapping the EdTech network: network density and diameter

Network Metrics	Number	School Leaders Academic/Research Boards
Nodes (Stakeholder)	18	EducationaPInstitutions
Edges (Number of interactions)	93	Teachers Local leaders/Politicians Parents/Family/Community Employers
Graph Density	0.60	Accreditation bodies NGOS/CSOs
Maximum Distance (Diameter)	3	Technology Providers PD Facilitators
Average Distance	1.45	Funders Policy Makers Researchers
EdTech Frameworks Analyzed	17	Edtech Startups Content Providers