Webinar Friday 14 May 2pm (Manila Time)

Harnessing Marine Renewable Energy By Dr Michael Abundo

Marine Renewable Energy (MRE) is a necessary step towards decarbonization and the growth of the Blue Economy. Mike will share his insights into the economics of various MRE technologies, resources available, choosing sites, and the drivers for MRE industry development.

Dr Michael Abundo is Managing Director of OceanPixel Pte Ltd, Singapore. He has extensive experience in marine energy applications and R&D in IoT, Drones, all forms of MRE and the Blue Economy.

https://events.development.asia/learning-events/mining-offshore-renewable-energy

This is not an ADB material. The views expressed in this document are the views of the author/s and/or their organizations and do not necessarily reflect the views or policies of the Asian Development Bank, or its Board of Governors, or the governments they represent. ADB does not guarantee the accuracy and/or completeness of the material's contents, and accepts no responsibility for any direct or indirect consequence of their use or reliance, whether wholly or partially. Please feel free to contact the authors directly should you have queries.

MARES Webinar Series

Harnessing Marine Renewable Energy

Dr Michael Lochinvar Sim ABUNDO

mike@oceanpixel.org +65 9066 3584 (Singapore) +63 917 580 5004 (Philippines)

Enabling Sustainability through Data Intelligence

OceanPixel Pte. Ltd. (Reg. No. 201427294R). NTU Innovation Centre, #03-22 @The NEST, 71 Nanyang Drive, Singapore 638075

Supporting Sustainable Transformations

www.oceanpixel.org

Supporting Sustainable Transformations

OceanPixel Enabling Sustainability through Data Intelligence

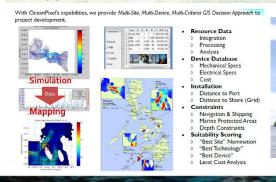
UNIVERSITY

Energy Research Institute @ NTU

Auards leating

Maintenance

Gov't Agencies


NANYANG

TECHNOLOGICAL

OceanPixel is a Singapore start-up that was incorporated in 2014, having spun-off from the Energy Research Institute at NTU.

The core team has combined expertise in sustainable energy research, development, demonstration, project development and experience in the relevant industry ecosystem, business, finance, policy and education.

OceanPixel believes in the development of Sustainable Ecosystems, and supports these efforts by offering Data Management technologies and services coupled with Suitability Analytics, data catalogues, report products and technical services. OceanPixel has various global involvements, but is currently focused in South East Asia, handling projects in Singapore, Philippines and Indonesia.

Pixel

Builds Power Plant BLUE

lechnical

-onpetence for

ovides

Consultants

OceanPixel

Provides intelligence to the sustainability ecosystem

Tech Provider

RE Developer

Eng'g,

Construction

Develops tech, sells, and facilitates installation

- 'Oceans' of Data. .
- Multiple 'Ecosystems'.
- Visualized and Understood.

Marine Renewable Energy (MRE)

"Renewable energy production which makes use of marine resources or marine space."*

*European Science Foundation

- Offshore Wind
- Floating Solar

Pixel

• Marine biomass (micro- and macro-algae)

Ocean Renewable Energy (ORE)

- Currents (Ocean Current, Tidal Currents/In-Stream)
- Tides (Tidal Range)
- Waves
- Salinity / Osmotic Gradient
- Thermal Gradient

MRE **#** ORE

ORE is a subset of MRE.

OceanPixel

Ocean Renewable Energy

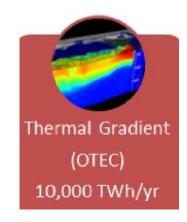
5 Ocean Renewable Energy Resources*

Tidal / Marine Current

800+ TWh/yr

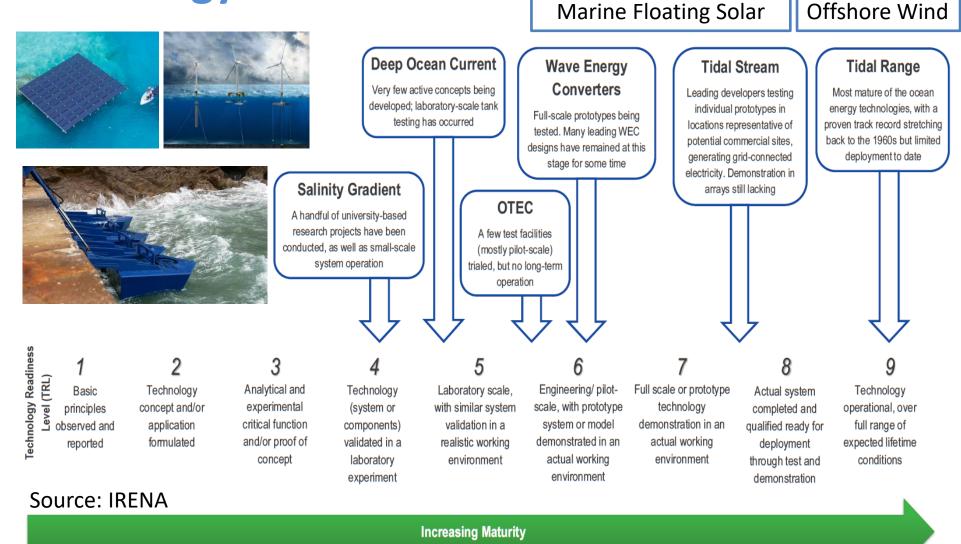
Waves

80,000 TWh/yr



2,000 TWh/yr

- Ocean Current / Tidal In-Stream energy is harvested by Current/Hydrokinetic turbines placed underwater where fast-flowing currents turn the generator blades similar to what wind does with wind turbines.
- **Tides (Tidal Range)** Tidal Barrages utilize the potential energy from the difference in height between high and low tides.
- **Wave** energy is produced from the surface motion of ocean waves or from pressure fluctuations below the surface.
- **Ocean Thermal** energy conversion (OTEC) uses the temperature difference between the surface seawaters (warm) and the deep seawaters (cool) to drive a heat engine to produce electricity.
- **Salinity Gradient** power is the available energy (or chemical potential) from the differences in salt concentration between the fresh water and seawater.


Tidal Range (Barrage) 300+ TWh/yr

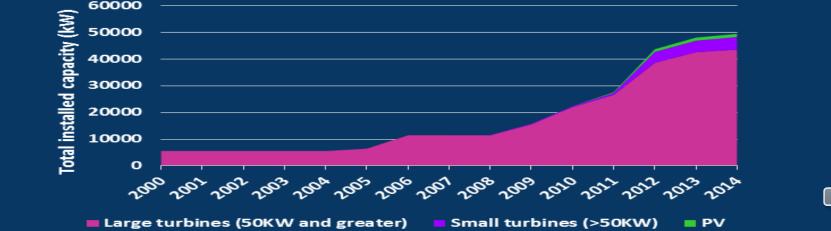
*International Energy Agency -Ocean Energy Systems (IEA-OES)

OceanPixel

Marine Renewable Energy: Technology Readiness

Marine-related RE Options

Present Technologies need >4m to be economically viable


- Good for Energy Recovery for Desalination Plants
- Still Too Expensive w/o co-application

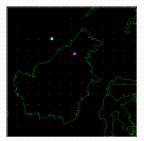
Sustainable Energy – Islands Example

Total = > 5,000 MW deliverable capacity

Кеу			\searrow
Onshore wind	40 MW exist	ing/planned	Ν
New onshore wind	100-200 MW	1	<u> </u>
Wave	500-1000 M	W	
Tidal	500-2,500 N	IW	
Offshore wind	1000 MW		
Wave leases	550 MW	•	
Tidal leases	500 MW		
Mirco & other	2.5 MW		\diamond
Gas & other	20 MW	Disper	sed
EMEC sites	5 + 7 MW	Dispersed and	
	of elec	trical de	manc
107%	in Orkr	ney met	by
/0	renewa	ables in	2014

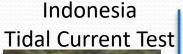
International Energy Agency

Global Initiatives



Developing Countries' Initiatives

Simulation Studies


Brunei Offshore Wind

Myanmar Tidal Barrage

Vietnam Tidal Turbine Drive Train

Malaysia OWC Test

Tow Tanks (eg UTM, MMU, NTU)

Philippines Tidal Barrage

Singapore Tidal Turbine Testing

Europe, N. America, Australia

Source: SEAcORE 2013

What is a Cushion Roller?

Cushion Rollers are components that hold floating platforms in place while absorber impacts that the platforms experience.

Technology Innovation – Competitive Edge

As a Cushion Roller

- First cushion roller to be able to produce electricity
 - Translate to cost savings
- Impact absorbing mechanism has potential for extended Medium Er Medium Ri Array Appro
- As a Wave Energy Device
- Device is completely above water
 - Translate to reduced corrosion
 - Easier access for installation, maintenance and repair
- Able to generate under small waves conditions
 - Translate to greater range of application

TIDAL IN-STREAM ENERGY DEMONSTRATION IN SG (50kW)

Client: Envirotek Pte Ltd Collaborators: Schottel Hydro, OceanPixel, LitaOcean, Sentosa, Aquatera,

Orcades Marine, ITP, Braemar Offshore

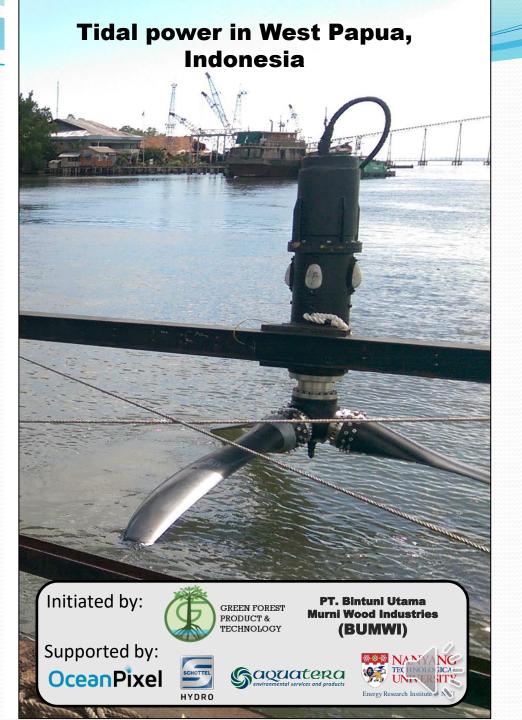
Start: November 2015 *Deployment: February 2017 End: February 2018*

OceanPixel

Envirotek Tidal Demo Project in Singapore (~3mins)

Singapore Tidal Energy Demonstration Project

https://vimeo.com/212361278


BUMWI's mangrove chipping operation in West Papua is the first of its kind to receive sustainability certification from the Forestry Stewardship Council (FSC[®]).

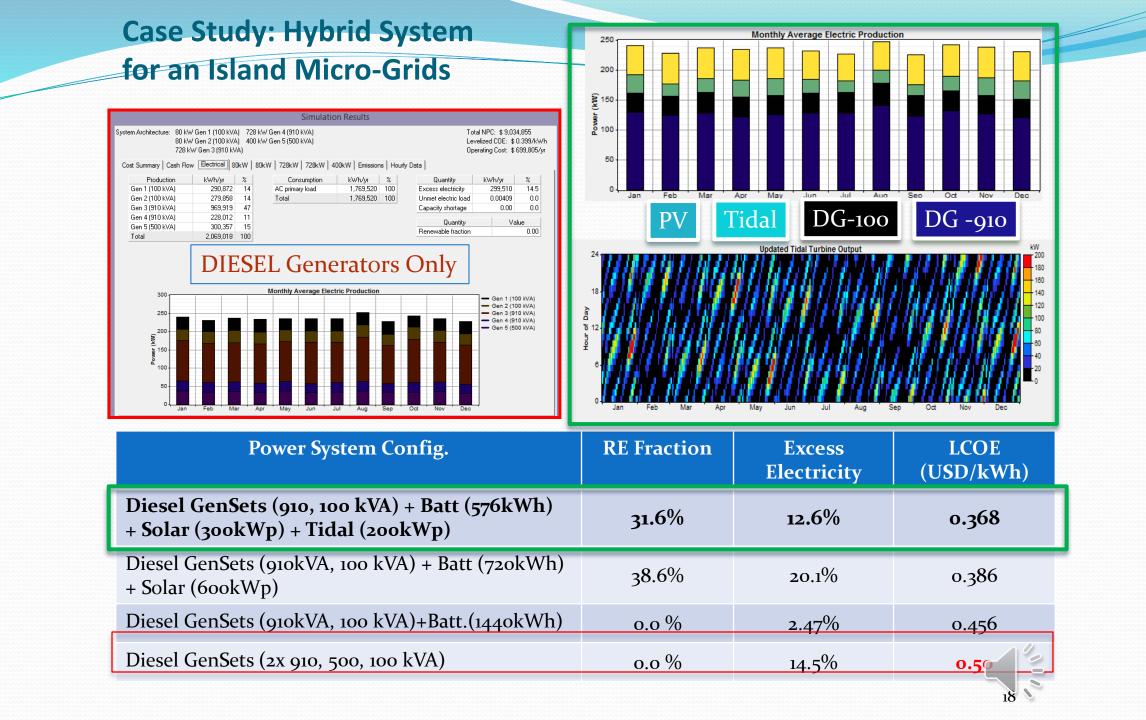
The carbon footprint of the plant is now set to be reduced by harnessing power from nearby tidal currents.

The BUMWI facility is located on the southern side of Bintuni Bay, West Papua, Indonesia

Source: Google Maps

The project approach combines appropriate technology with local content and know-how.

The tidal turbine is suspended below a floating barge in a simple and robust arrangement which allows for straightforward inspection and maintenance and can be easily replicated.



The project has proven the capability of a multi-company team to develop, implement and successfully deploy a tidal turbine in one of the most remote and areas of Indonesia.

The installation of Schottel Hydro's 50kW turbine in West Papua is a significant step on the journey to use marine renewables to de-carbonise energy supplies across the region.

FACTORS AFFECTING LCOE

CAPITAL COSTS • Devices Foundations/Moorings Connections Installation Project Costs Decommissioning ANNUAL ENERGY **OPERATING COSTS** PRODUCTION • Site Resource Device Energy •Transmission Charges Capture Availability

Summary data gathered for each stage of deployment, and each technology type

Deployment	Maniahla	1.1-14	W N		Tid	Tidal		OTEC	
Stage	Variable	Unit	Min	Max	Min	Max	Min	Max	
	Project								
First	Capacity	MW	1	3	0.3	10	0.1		
array/First	CAPEX	\$/kW	4,000	18,100	5,100	14,600	25,000	45,000	
Project		\$/kw per							
	OPEX	year	140	1,500	160	1,160	800	1,440	
	Project								
	Capacity	MW	1	10	0.5	28	10	2	
	CAPEX	\$/kW	3,600	15,300	4,300	8,700	15,000	30,000	
Second		\$/kW per							
array/Second	OPEX	year	100	500	150	530	480	95	
Project	Availability	%	85%	98%	85%	98%	95%	95%	
	Capacity								
	Factor	%	30%	35%	35%	42%	97%	97%	
	LCOE	\$/MWh	210	670	210	470	350	650	
	Project								
	Capacity	MW	2	75	3	90	100	100	
	CAPEX	\$/kW	2,700	9,100	3,300	5,600	7,000	13,000	
First		\$/kW per							
Commercial-	OPEX	year	70	380	90	400	340	62	
scale Project	Availability	%	95%	98%	92%	98%	95%	95%	
	Capacity								
	Factor	%	35%	40%	35%	40%	97%	97%	
	LCOE	\$/MWh	120	470	130	280	150	28	

fluid . energy . intelligence

Project Keys to Success:

Need/Demand/End-Use (Market Existence)

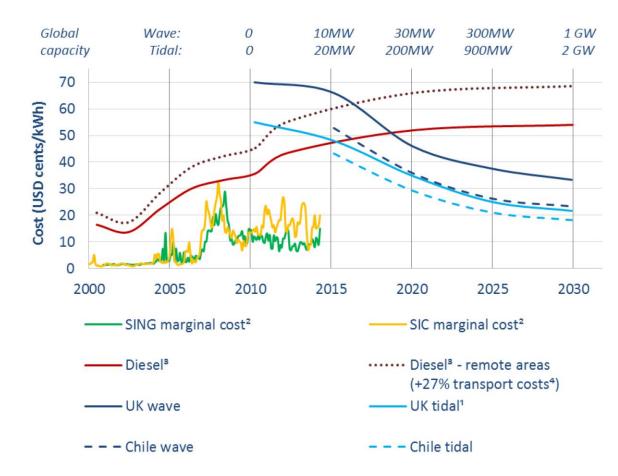
Good Site and Resource

Appropriate Technology

Source :OES, International Levelised Cost of Enery for Ocean Energy Technologies, May 28, 2015

Source : SI Ocean, Ocean Energy : Cost of Energy and Cost Reduction Opportunities, May 2013

What does this table mean???


Maintenance

• Operations

Seabed Rent

Insurance

Sources: ¹Carbon Trust; ²CNE; ³World Bank/Bloomberg; ⁴Chilean Ministry of Energy

Marine energy markets:

LONG TERM Grid electricity

MEDIUM TERM

Diesel

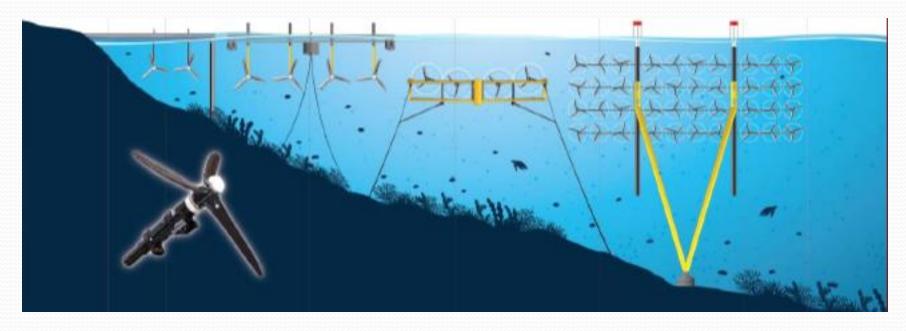
replacement;

water pumping

and desalination

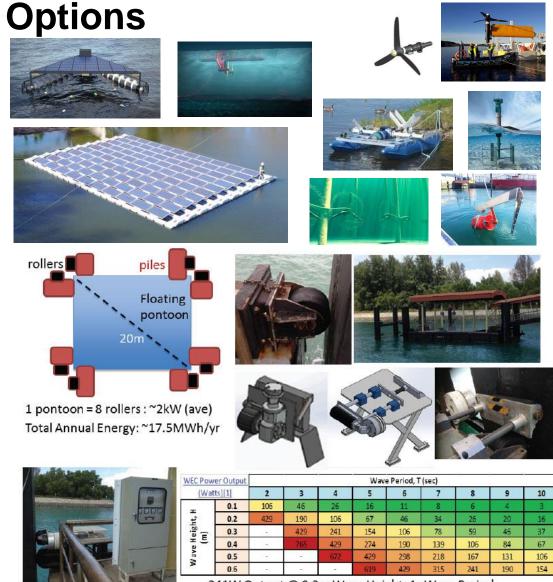
(mines)

SHORT TERM Remote diesel replacement


In the HYBRIDShip project of Fiskestrand Holding launched in 2016, a diesel-powered ferry was converted to hydrogen.

"Energy Observer" is currently touring the world to demonstrate the potential of hydrogen as a power source.

Ocean Energy - Configuration Options


(Tidal In-Stream Energy Device example)

- Jetty-based / fixed structure (e.g. bridges)
- Floating
- Submerged (neutrally-buoyant)
- Seabed-mounted
- Others? Vessel-mounted?

Project Design – Some Deployment+Installation

All Renewable Energy Options should be explored if possible: Solar, Wind, Tidal, Wave, etc

Sizing Combinations are Flexible and Scalable

 E.g. Tidal Turbines Systems Small to Large: 3.5kW, 5kW, 20kW, 70kW, and more, up to 2MW

Various Deployment & Installation Options should also be explored:

- Seabed-mounted
- Seaport-attached
- Jetty-based
- Floating Stand-alone
- Floating-Integrated

(to offshore structure, or Vessel, etc)

- Mobile, Floating
- Mobile, Underwater

And more!

241W Output @ 0.3m Wave Height, 4s Wave Period https://www.mpa.gov.sg/assets/rnd/e-bulletins/issue2/html/index4.html

Example for 10kW* Load – Some Technology Options

Marine Floating Solar

- Resource Availability:
 ~ 17% of the time
- Size: ~20 kWp
- Surface Space:

~140 sqm

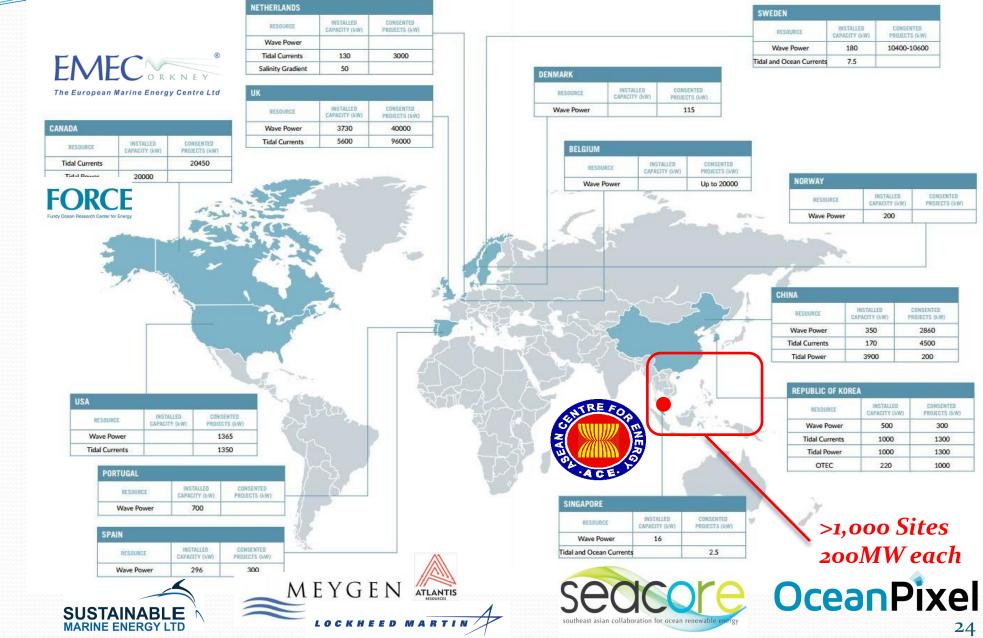
- Costs**:
- Project Dev't + CapEx ~S\$150k to S\$200k
- Annual OpEx ~S\$10k to S\$20k

Tidal Current Turbine/s

- Resource Availability: ~30% to 40% of the time (in a month)
- Size: ~ 40 to 100 kWp
- Surface Space:
 ~35 to 70 sqm
- Costs**:
- Project Dev't + CapEx ~S\$200k to S\$350k
- Annual OpEx ~S\$10k to S\$25k

Hybrid Floating Solar + Tidal

- Size (Solar): ~10 kW
- Size (Tidal): ~20 to 60 kWp
- Surface Space:
 ~70 sqm
- Costs**:
- Project Dev't + CapEx ~S\$175k to S\$300k
- Annual OpEx ~S\$10k to S\$20k



*Electrical Load: 10kW Power with 8 hours per day operation, assumed daily load energy requirement = 80kWh/d ** May include a feasibly-sized energy storage system (e.g. battery)

International Energy Agency

Global Initiatives

Philippines' Tidal In-Stream (Current) & Wave Energy Potential

fluid.energy.intelligence

Philippines has more than 7 thousand islands, including remote islands which either do not have electricity access or rely heavily on diesel power generation. Some of these areas are suitable for tidal in-stream and wave energy power generation development.

Philippines' tidal in-stream and wave energy potential

No	Province / Region	Electrification rate*	Population (million)
1	Cagayan / II	91.8%	1.20
	Catanduanes / V	88.7%	0.26
2	Sorsogon / V	88.7%	0.79
	Northern Samar / VIII	87.2%	0.63
3	Southern Leyte / VIII	87.2%	0.42
3	Surigao del Norte / XIII/Caraga	93.8%	0.49
	Basilan / ARMM	38.7%	0.35
4	Sulu / ARMM	38.7%	0.82
	Tawi-tawi / ARMM	38.7%	0.39
5		82.20/	0.95
6	Palawan / IV-B	82.2%	0.85
	Batangas / IV-A	96.3%	2.69
7	Occidental Mindoro / IV-B	82.2%	0.49
	Oriental Mindoro / IV-B	82.2%	0.84

identified tidal current energy reserves

🔘 identified wave energy reserves

* electrification rate are identified in Region level

Source: Energy Research Institute at Nanyang Technological University, Philippines Department of Energy, Philippines Statistics Authority, OceanPixel

Deloitte Consulting and OceanPixel SEA(2017).

Marine Renewable Energy: Unlocking The Hidden Potential Southeast Asia (SEA) Market Assessment, Singapore: OceanPixel.

The Philippines has substantial Ocean Renewable Energy (ORE) resource (the Department of Energy has estimated it to be 170GW, and some studies have estimated that around **80GW+ are from tidal currents / tidal streams**).

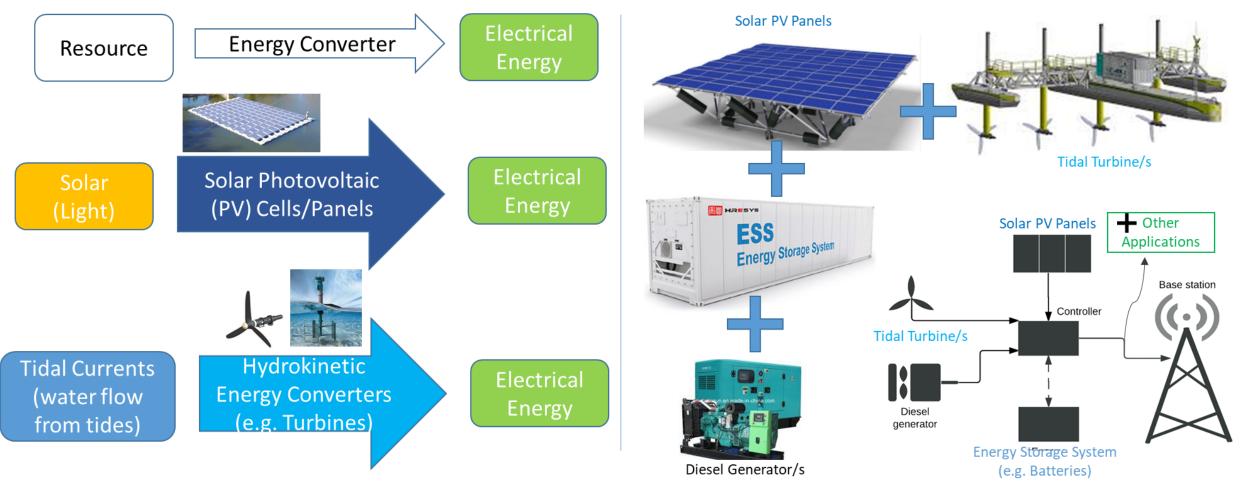
Tidal In-Stream Energy - Potential Technology for Archipelagic Countries (like the Philippines, Indonesia, etc)

fluid.energy.intelligence

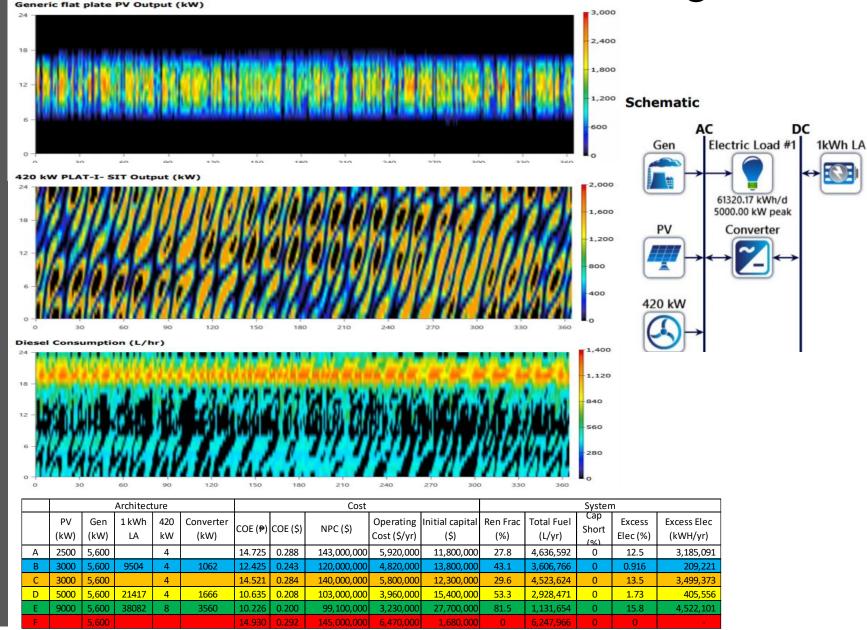
Economics of Tidal In-Stream Energy Grid-Connected Projects (Levelized Cost of Energy, Internal Rate of Return, Return of Investment) with Indicative Estimates for Low, Medium, and High Project CapEx Scenarios

			Total Project	(20-Years)		
100 MW	~USD 3	378M	~USD 5	560M	~USD	984M
	CapEx = \$ 233.2M	OpEx = \$6.63M/yr	CapEx = \$ 406.5M	OpEx = \$6.63M/yr	CapEx = \$810.2M	OpEx = \$6.63M/yr
FIT (PhP/kWh)	USD 2M/ MW (LCC	DE = \$ 0.11/kWh)	USD 4M/ MW (LCC	DE = \$ 0.17/kWh)	USD 8M/MW (LC	OE = \$0.3/kWh)
10	ROI = 95%	IRR = 14%	ROI = 32%	IRR = 6%		
	Profit = ~USD 358M	Payback = ~6.5 yrs	Profit = ~USD 177M	Payback = ~11 yrs		
13.5	ROI = 163%	IRR = 21%	ROI = 78%	IRR = 11%	ROI = 1%	IRR = 3%
	Profit = ~USD 616M	Payback = ~5 yrs	Profit = ~USD 434M	Payback = ~7.6 yrs	Profit = ~USD 9M	Payback = ~16.2 yrs
17	ROI = 232%	IRR = 28%	ROI = 124%	IRR = 15%	ROI = 27%	IRR = 5%
17	Profit = ~USD 873M	Payback = ~3.5 yrs	Profit = ~USD 691M	Payback = ~6.3 yrs	Profit = ~USD 267M	Payback = ~12 yrs

			Total Project Co	st (20-Years)		
200 MW	~USD 75	53.5M	~USD 1,1	17.3M	~USD 1,	966.3M
	CapEx = \$ 465.3M	OpEx = \$13.25M/yr	CapEx = \$ 811.8M	OpEx = \$13.25M/yr	CapEx = \$ 1,620.3 M	OpEx = \$13.25M/yr
FIT (PhP/kWh)	USD 2M/ MW (LCC)E = \$0.11/kWh)	USD 4M/ MW (LCC	DE = \$ 0.17/kWh)	USD 8M/MW (LC	OE = \$0.3/kWh)
10	ROI = 95%	IRR = 14%	ROI = 35%	IRR = 6%		
10	Profit = ~USD 718M	Payback = ~6.5 yrs	Profit = ~USD 354M	Payback = ~11 yrs		
13.5	ROI = 164%	IRR = 21%	ROI = 78%	IRR = 11%	ROI = 1%	IRR = 3%
13.5	Profit = ~USD 1,233M	Payback = ~4.5 yrs	Profit = ~USD 869M	Payback = ~7.6 yrs	Profit = ~USD 20M	Payback = ~16.2 yrs
17	ROI = 232%	IRR = 28%	ROI = 124%	IRR = 15%	ROI = 27%	IRR = 5%
17	Profit = ~USD 1,748M	Payback = ~3.5 yrs	Profit = ~USD 1,384M	Payback = ~6.3 yrs	Profit = ~USD 535M	Payback = ~12 yrs



BACKGROUND / CONTEXT


OceanPixel

Hybrid Marine Renewable Energy System

Harnessing Energy from Tidal Currents and Solar (on land and at sea)

Techno-Economic Modelling

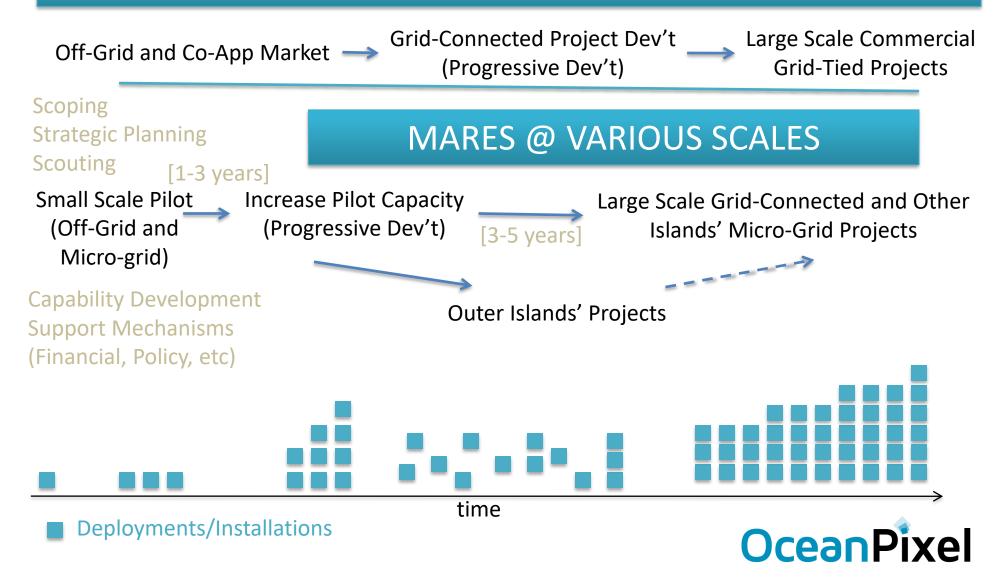
Philippine Off-Grid Island Case Study: High-level techno-economic model:

- A hybrid solar PV and tidal with battery system and back-up diesel generator set is found to be optimal.
- The optimal sizing for the case study shown is at 5MW solar PV, 1.68MW tidal, 21.4MWh Battery with 2MW guaranteed dependable capacity.
- 53% RE Fraction, ~USD0.2 Blended Rate

Some Reference Rates and Costs of Tidal In-Stream Energy Projects

fluid. energy. intelligence

Project/s Size and Location	Technology	Feed-in Tariff (FIT) / Power Purchase Agreement (PPA) Rate or LCOE and term	Notes/Remarks
22MW, Canada [2]	Tidal In-Stream	 (a) FIT: CAD530/MWh (~PhP19.63/kWh), 15 years (b) FIT: CAD420/MWh (~PhP15.56/kWh), 15 years 	FIT rates are developmental rates called "COMFIT" or Community FIT. Lower rate for projects producing >16,640 MWh
9MW, Canada [3]	Tidal In-Stream	CAD530/MWh (~PhP19.63/kWh), 15 years	Project Cost: ~PhP4.34B
~1-2MW, Indonesia (West Papua) [1]	Hybrid Tidal In- Stream, Solar, Diesel	Diesel-only LCOE: USD0.5 to USD 1 / kWh (~PhP24.06 to PhP48.12/kWh) Hybrid (Tidal+Solar+Battery+Diesel) Case Study LCOE: USD 0.25 to USD 0.368 /kWh (~PhP12.03 to PhP 17.71/kWh), 20 years	Phase 1 (Test): Tidal + Diesel – completed in 2017
600kW to 5MW, Philippines	Hybrid Tidal In- Stream, Solar, Diesel	Diesel-Only True Cost of Generation Rate: ~PhP 13.5 to 24.83/kWh Hybrid (Tidal+Solar+Battery+Diesel) LCOE: (~PhP12.03 to PhP 17.71/kWh), 20 years	Various Off-Grid Studies – i.e. Tawi-Tawi, Dinagat, San Antonio (N. Samar) <u>Estimated/Indicative Project Costs:</u> PhP75m-100m (600kW, no OpEx) PhP125m-150m (1.2MW, no Opex) ~PhP500m (5MW, no Opex)


[1] Deloitte Consulting and OceanPixel SEA(2017). *Marine Renewable Energy: Unlocking The Hidden Potential Southeast Asia (SEA) Market Assessment*, Singapore [2] https://energy.novascotia.ca/renewables/programs-and-projects/tidal-fit

[3] https://www.offshore-energy.biz/canada-awards-c30-million-for-9mw-tidal-energy-scheme/

Hybridized Marine RE Pathway

MARES: Marine Aquaculture, Reefs, Renewable Energy, and Ecotourism for Ecosystem Services

A SUSTAINABLE BLUE ECONOMY:

Restores, protects and maintains the diversity, productivity, resilience, core functions, and intrinsic value of marine ecosystems — the natural capital upon which its prosperity depends.

Is based on clean technologies, renewable energy, and circular material flows to secure economic and social stability over time, while keeping within the limits of one planet. Provides social and economic benefits for current and future generations by contributing to food security, poverty eradication, livelihoods, income, employment, health,safety, equity, and political stability.

MARES:

SUSTAINABLE DEVELOPMENT GOALS

Marine Aquaculture, Reefs, Renewable Energy, & Ecotourism for Ecosystem Services

Electrification: More than just electricity supply

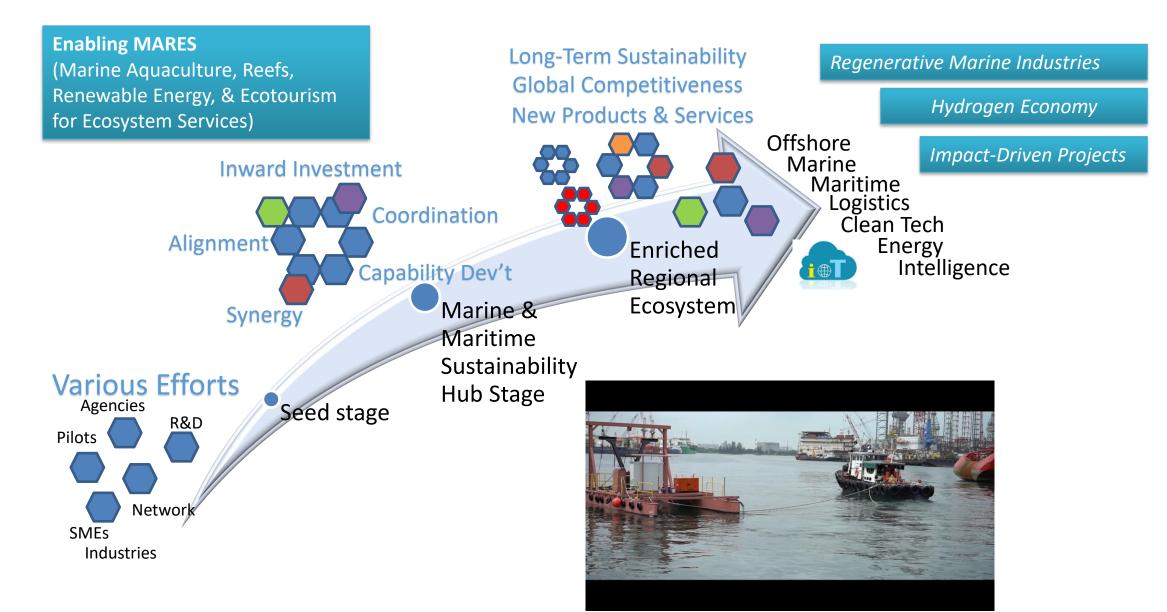
- Electrification of Transportation
- Electrification of Vessels
- Electrification of Ports
- Automation of Processes
- Energy Storage Systems
- Aquaculture Applications
- Water Production (e.g. Desalination)
- Ice Making
- Digitalization
- Others?

Sustainable Integrated Development for Islands & Coasts

Aquaculture & Fisheries

Green Transport – Sea and Land

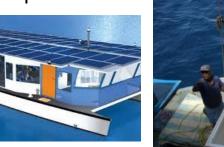
Green Maritime Ecosystem – Ports, Vessels, Aquaculture, Desalination, Water, Ice/Cooling ++



- Renewable Energy + Green Transport
- + Aquaculture + Water Production
- + Freezing/Cooling + Local Content
- + Other Sustainable Initiatives

OceanPixel

Building the Sustainable Future Blue Economy


Potential Pilot Projects

Ocean/Marine Renewable Energy: Marine Solar, Offshore Wind, Tidal In-Stream, Wave

Systems and Eco-Systems' Integration

Transportation

lce

Aquaculture Offshore
aquaculture Mussel Fish pen farming farming MRE Device

Testbedding Other Innovations Technologies **Business Models** "Learn by Doing" **OceanPixel**

Ports/Marinas/Bays

Water Production

Reef Restoration, Marine Area Monitoring

Summary / Conclusions / Recommendations

Marine Renewable Energy Options Exist

- Floating Solar, Offshore Wind (both already commercially viable)
- Waves and Currents, maybe OTEC and Salinity Gradient
- Need for a Resource Inventory Review and Suitability Studies for Pilot Projects

Green Marine and Maritime Ecosystem

- Lower Hanging Fruits Green Vessels, Green Ports
- Electrification of a Suite of Applications Transport, Aquaculture, Water, Ice, Others?
- Detailed planning of a Sustainable Integrated Development for Islands and Coasts

Progressive Development Approach Towards a Blue Economy

- Leverage the Marine/Maritime Ecosystem of the Country/Region(s)
- Capability Development Local Supply Chain (especially Services)
- Demonstration and Pilot Projects can accelerate the uptake
- Hybrid Systems and Co-Application will be key to success

Thank You! ③

Michael Lochinvar S. Abundo, PhD

Managing Director, OceanPixel Pte Ltd (Singapore)

Mobile: +65 9066 3584 Email: mike@oceanpixel.org

