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15 Year Experience working on Disaster Research

« Survey Data: Hurricanes Katrina, Ivan, Rita, Sandy, Harvey Maria
 Various Earthquakes and Tsunamis

« Behavioral Intention Surveys — Understanding decision making of
households in disasters (pre and post)

« Social Network Surveys — Understanding the structure of social nets and
their influence on decision making in disaster response and recovery

« Advantages
* Representative Sample
« Socio-Demographic Information is available

» Disadvantages
» Lacks spatio-temporal granularity
* Longitudinal data is unavailable
« Sample size is limited
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Disaster resilience: a global challenge

« $2.9T economic loss in 20 years globally, and increasing.
» Especially the extreme (“long tailed”) events.
« Due to climate change and rapid urbanization.
20 Kernel Density Estimates by Decade, Right Tails

» 54% population live in urban areas (2016)
* Projected increase to 68% by 2050.
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 Improving the resilience of cities to
disasters is one of the key goals for
development agencies.
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Opportunity: Large scale mobility data

« GPS/call detail record data collected
from mobile phones via apps

» Key features:
» 1~5% sample of the total population.
« 50~100 points per user each day.
« Can estimate staypoints but not routes
» Do not contain demographic information.

\ ’ « Estimate using census data (e.g. Yabe and
Florida, USA 7% 1 Ukkusuri, 2020)

* Mobile phone location data contain bias in socio-economic population groups.
« Accessibility to technology, age-groups, wealth, etc.

* However, macroscopic analysis usually yield robust results (e.g. urban population density
estimations), as shown in several previous studies (Deville et al., 2014; Blondel et al., 2015).



Data Representativeness

* Mobile phone data may contain bias particularly in low income nations

« Studies have shown (Wesolowski, 2013) that in countries such as Rwanda
and Kenya are not representative of the entire population — bias towards
males, educated groups and large households

* Mobile phone location data contain bias in socio-economic population
groups.
» Accessibility to technology, age-groups, wealth, etc.

« However, macroscopic analysis usually yield robust results (e.g. urban population
density estimations), as shown in several previous studies (Deville et al., 2014; Blondel
et al., 2015).

 Bias in developed countries is not established
 Bias correction techniques can be used — Raking, Weighting methods



How can we use such data?

Evaluation of ongoing infrastructure
related investment decisions.

 How beneficial were the investments on
highway corridor X?

Prediction of recovery outcomes of
communities after future disasters.

« How will population recover in city X after
disaster Y?

« What would be the demand for public utilities
in city X after 2 weeks from disaster?

Re-design of connectivity between
cities to prevent isolation and foster
recovery through road investments.

* How would the recovery of city X improve by
strengthening the connection with city Y?

FRED = — Total nempioyed, phus 8 marginaly atached workers ph ttal employed part i for ecanamic reasans
— Cwlan Unempicyment Rate

AW . . .
: / N Monitoring economic
e e A e . resilience around
e S “~___ highway corridors

Prior observations Predictions
1.0
R e “aal Ciales, PR
¥ Ciales -- Guanica, PR

Within 1 hour, Guanica

Guanica 0 40km

Displacement Rate D(t)

Construction of road 0 20 40 60 80

Days from Disaster t



Challenge: Lack of data-driven models for recovery

Studies using mobility data for post-disaster
displacement analysis

v" Mobile phone call detail record data

« Haiti Earthquake (Lu et al., 2012) o Sandv. Twi
Haiti Earthquake (Lu et al., 2012) urricane Sandy, Twitter
« Nepal Earthquake (wilson et al., 2016) (Wang et al., 2014)

v" Mobile phone GPS location data
« Kumamoto Earthquake (vabe et al., 2019)
v Twitter geo-tagged data

11111

* Hurricane Sandy (wang et al., 2014) o
. ey Nepal Earthquake Kumamoto Earthquake
Focus on initial short term movement (~1 month) (Wilg’on of a|f12o16) (Yabe et al. 20“19)

Lack of methods to utilize large-scale mobility data for modeling
long-term post-disaster population dynamics!
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Only non-compulsory measures were taken in Japan
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« Japan = a unique study!
« Only non-compulsory non-pharmaceutical interventions (no lockdowns)

« Small count of patients and deaths despite proximity to origin of spread.

- Can we understand why through mobility data analytics?

Non-Compulsory Measures Sufficiently Reduced Human Mobility in Japan during the COVID-19
Epidemic. Yabe et al. (2020) https://arxiv.org/abs/2005.09423
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Only non-compulsory measures were taken in Japan
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* Mobile phone data (Yahoo Japan) tells us that major stations had 80%
reduction of visitors compared to typical periods.

Some questions:
* How did the people’s contact patterns change?
* If so, how did that affect the transmissibility of COVID-19 in Tokyo?

Non-Compulsory Measures Sufficiently Reduced Human Mobility in Japan during the COVID-19
Epidemic. Yabe et al. (2020) https://arxiv.org/abs/2005.09423
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Decrease in social contacts before/after SoE
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Non-Compulsory Measures Sufficiently Reduced Human Mobility in Japan during the COVID-19
Epidemic. Yabe et al. (2020) https://arxiv.org/abs/2005.09423 15
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Income inequality in contact reduction
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Non-Compulsory Measures Sufficiently Reduced Human Mobility in Japan during the COVID-19
Epidemic. Yabe et al. (2020) https://arxiv.org/abs/2005.09423 16
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Strong correlation between mobility and R(t)
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Non-Compulsory Measures Sufficiently Reduced Human Mobility in Japan during the COVID-19
Epidemic. Yabe et al. (2020) https://arxiv.org/abs/2005.09423
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Strong correlation between mobility and R(t)
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Epidemic. Yabe et al. (2020) https://arxiv.org/abs/2005.09423
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Trans-SEIR model: overview

* Objective: Understand the role of urban transportation systems in the
spread of infectious diseases in urban areas
« Spatial movements of urban commuters / Various type of contagion events
» Can we control the transportation system to stop the spread of infectious diseases?

Leave for work

and activity - N Arrive -
»| Transportation > Activity
System * Location
Return home ¢ Leave activity N
. locations

Activity
Contagion

Activity
Contagion

19



Trans-SEIR model: NYC case study

COVID-19 data and NYC commuting data

Estimated R,: 3.295
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but varies locally due to different transit usage patterns

West & Lower Manhattan is the intermediate point: people get
infected here, then bring the disease back for local infections

0

0

0

o

I Activity contagion

BX2 BX1 M3 M1 M2 Qi Q3 Q4 Q2 BK2 BK1 BK3 BKS BK4

Travel and activity contagions at different locations in
NYC as of March 26, 2020

S

20



Trans-SEIR model: NYC case study

* If preventative / early entrance control was placed in NYC:
» May save 700k commuters from being infected, and delay the peak by 25 days
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Economic impacts of disasters via mobility analytics

Region A (hit by disaster)

W

i) Identify similar
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Region B (no disaster)

Visits
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dlsaster
iii) Quantify causal

impact of disaster
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Quantifying the Economic Impact of Extreme Shocks on Businesses using Human Mobility Data:

a Bayesian Causal Inference Approach. Yabe et al. (2020) https://arxiv.org/abs/2004.11121
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Estimation results for a single business case:

 An example of a Walmart in San Juan, Puerto Rico
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Quantifying the Economic Impact of Extreme Shocks on Businesses using Human Mobility Data:

a Bayesian Causal Inference Approach. Yabe et al. (2020) https://arxiv.org/abs/2004.11121

25


https://arxiv.org/abs/2004.11121

Estimation results for a single business case:

 An example of a Walmart in San Juan, Puerto Rico
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a Bayesian Causal Inference Approach. Yabe et al. (2020) https://arxiv.org/abs/2004.11121

Quantifying the Economic Impact of Extreme Shocks on Businesses using Human Mobility Data:
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Estimation results for a single business case:

 An example of a Walmart in San Juan, Puerto Rico
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Quantifying the Economic Impact of Extreme Shocks on Businesses using Human Mobility Data:
a Bayesian Causal Inference Approach. Yabe et al. (2020) https://arxiv.org/abs/2004.11121
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Estimation results for a single business case:

Legend

<’ PR_businesses

Building Material
¢ Gasoline
e Grocery
‘ Hospitals
Hotels
* Restaurants

0 10 20 30 40km Supermarkets

e — * Telecom
¢ Universities

-> Applied method to all businesses in Puerto Rico

Quantifying the Economic Impact of Extreme Shocks on Businesses using Human Mobility Data:
a Bayesian Causal Inference Approach. Yabe et al. (2020) https://arxiv.org/abs/2004.11121

28


https://arxiv.org/abs/2004.11121

Disaster impact by category and location

« Cumulative disaster impacts were more severe in rural areas.
 Impacts differed across business categories (gasoline stations < universities)
- We can use these estimates to quantify the $$$ loss from mobility data!

A Landfall ~ 1 month from landfall
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Quantifying the Economic Impact of Extreme Shocks on Businesses using Human Mobility Data:
a Bayesian Causal Inference Approach. Yabe et al. (2020) https://arxiv.org/abs/2004.11121 29
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Mobility Patterns reveals
Inequality In post-disaster Recovery



Intra-regional inequity In evacuatlon destinations
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Effects of income inequality on evacuation, reentry and segregation after disasters. Yabe &
Ukkusuri. (2020). Transportation Research Part D: Transport and Environment, 102260
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Intra-regional inequity In evacuatlon destinations

« Characteristics of evacuation el [T T T | o] BT ; miintiai
destinations after Irma. | T
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« Higher income levels (richer
neighborhoods)

« Areas with less power
outage rates

« Areas with less housing
damage rates.
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Can we model these recovery patterns observed from mobility data?



Modeling recovery of socio-physical systems

Questions:

« Can we model the recovery of social and physical systems after disasters?
 Are there interdependencies between these two systems?
* How do the dynamics differ across communities and industries?
« What characteristics explain such spatial heterogeneity?

Approach:

« Calibrate a conceptual model of socio-physical dynamics using past data.
* Input: shock profiles of disasters, epidemics etc.

« Output: recovery trajectories of social and physical systems.
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Case study of regional recovery in Puerto Rico
after Hurricane Maria (2017)
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Data-driven Inference of Interdependent Dynamics between Social and Physical Systems during
Disaster Recovery. Yabe, Rao & Ukkusuri. (in preparation)
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Data we used to fit the model

« Recovery of water service deficit
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Data-driven Inference of Interdependent Dynamics between Social and Physical Systems during
Disaster Recovery. Yabe, Rao & Ukkusuri. (in preparation)




Works on smart mobility and ridesharing

i 7:00-23:59
5 % o o ;I?£g=5_31-35503
261 o) ’

25 244

Speed (km/h)

-25 16

(a) Weekday MP coefficient
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Active Uber drivers

Significant spatial heterogeneity in search time More Uber drivers = more congestion

Understanding the operational dynamics of Mobility Service Providers: A case of Uber. Qian et al.
(2020) ACM Transactions on Spatial Algorithms and Systems

Impact of transportation network companies on urban congestion: Evidence from large-scale
trajectory data. Qian et al. (2020) Sustainable Cities and Society
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Summary

» High Resolution Mobility Data provide answers to important questions in
Cities:
« Spatio-temporal patterns
« Economic impacts (measured by foot traffic)
Recovery of communities
Covid-19 social distancing metrics
Inequalities in community recovery
Sustainability Impacts

» Way Forward: Work with ADBI

» Covid-19 Impacts using mobility data

» Estimate economic impacts using mobility data after disasters and Covid-19 type of
shocks

« Uber, Lyft, and Emerging Mobility Impacts on Cities — e.g. Emissions and
Sustainability

We look forward to continuing our work with ADBI on topics of societal relevance!
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