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15 Year Experience working on Disaster Research

• Survey Data: Hurricanes Katrina, Ivan, Rita, Sandy, Harvey Maria

• Various Earthquakes and Tsunamis

• Behavioral Intention Surveys – Understanding decision making of 
households in disasters (pre and post)

• Social Network Surveys – Understanding the structure of social nets and 
their influence on decision making in disaster response and recovery

• Advantages
• Representative Sample

• Socio-Demographic Information is available

• Disadvantages
• Lacks spatio-temporal granularity

• Longitudinal data is unavailable

• Sample size is limited
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Disaster resilience: a global challenge

• Improving the resilience of cities to 
disasters is one of the key goals for 
development agencies.
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• $2.9T economic loss in 20 years globally, and increasing.

• Especially the extreme (“long tailed”) events. 

• Due to climate change and rapid urbanization. 

• 54% population live in urban areas (2016)

• Projected increase to 68% by 2050. 

[Coronese et al., 2019]



Opportunity: Large scale mobility data
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• GPS/call detail record data collected 
from mobile phones via apps

• Key features: 

• 1~5% sample of the total population.

• 50~100 points per user each day. 

• Can estimate staypoints but not routes

• Do not contain demographic information. 

• Estimate using census data (e.g. Yabe and 
Ukkusuri, 2020)Florida, USA

• Mobile phone location data contain bias in socio-economic population groups.
• Accessibility to technology, age-groups, wealth, etc. 

• However, macroscopic analysis usually yield robust results (e.g. urban population density 
estimations), as shown in several previous studies (Deville et al., 2014; Blondel et al., 2015).



Data Representativeness

• Mobile phone data may contain bias particularly in low income nations

• Studies have shown (Wesolowski, 2013) that in countries such as Rwanda 
and Kenya are not representative of the entire population – bias towards 
males, educated groups and large households

• Mobile phone location data contain bias in socio-economic population 
groups.

• Accessibility to technology, age-groups, wealth, etc. 

• However, macroscopic analysis usually yield robust results (e.g. urban population 
density estimations), as shown in several previous studies (Deville et al., 2014; Blondel 

et al., 2015).

• Bias in developed countries is not established

• Bias correction techniques can be used – Raking, Weighting methods
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How can we use such data?

1. Evaluation of ongoing infrastructure 
related investment decisions. 
• How beneficial were the investments on 

highway corridor X?

2. Prediction of recovery outcomes of 
communities after future disasters. 
• How will population recover in city X after 

disaster Y? 

• What would be the demand for public utilities 
in city X after 2 weeks from disaster? 

3. Re-design of connectivity between 
cities to prevent isolation and foster 
recovery through road investments. 
• How would the recovery of city X improve by 

strengthening the connection with city Y? 
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Construction of road 

Prior observations Predictions

Monitoring economic 

resilience around 

highway corridors



Challenge: Lack of data-driven models for recovery 
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• Studies using mobility data for post-disaster 

displacement analysis

✓ Mobile phone call detail record data 

• Haiti Earthquake (Lu et al., 2012)

• Nepal Earthquake (Wilson et al., 2016)

✓ Mobile phone GPS location data 

• Kumamoto Earthquake (Yabe et al., 2019)

✓ Twitter geo-tagged data

• Hurricane Sandy (Wang et al., 2014)

• Focus on initial short term movement (~1 month)

Lack of methods to utilize large-scale mobility data for modeling 

long-term post-disaster population dynamics!

Haiti Earthquake (Lu et al., 2012) Hurricane Sandy, Twitter 

(Wang et al., 2014)

Nepal Earthquake 

(Wilson et al., 2016)

Kumamoto Earthquake 

(Yabe et al., 2019)
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Only non-compulsory measures were taken in Japan
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Non-Compulsory Measures Sufficiently Reduced Human Mobility in Japan during the COVID-19 

Epidemic. Yabe et al. (2020) https://arxiv.org/abs/2005.09423

• Japan = a unique study!

• Only non-compulsory non-pharmaceutical interventions (no lockdowns)

• Small count of patients and deaths despite proximity to origin of spread.

→ Can we understand why through mobility data analytics?

https://arxiv.org/abs/2005.09423


Only non-compulsory measures were taken in Japan
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• Mobile phone data (Yahoo Japan) tells us that major stations had 80% 
reduction of visitors compared to typical periods. 

Some questions:

• How did the people’s contact patterns change? 

• If so, how did that affect the transmissibility of COVID-19 in Tokyo? 

Non-Compulsory Measures Sufficiently Reduced Human Mobility in Japan during the COVID-19 

Epidemic. Yabe et al. (2020) https://arxiv.org/abs/2005.09423

https://arxiv.org/abs/2005.09423


Decrease in social contacts before/after SoE
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-60% contacts 
before SoE

-80%

Non-Compulsory Measures Sufficiently Reduced Human Mobility in Japan during the COVID-19 

Epidemic. Yabe et al. (2020) https://arxiv.org/abs/2005.09423

https://arxiv.org/abs/2005.09423


Income inequality in contact reduction 
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-60% contacts 
before SoE

Income inequality: 

Richer reduced 

more contacts

-80%

Non-Compulsory Measures Sufficiently Reduced Human Mobility in Japan during the COVID-19 

Epidemic. Yabe et al. (2020) https://arxiv.org/abs/2005.09423

https://arxiv.org/abs/2005.09423


Strong correlation between mobility and 𝑅(𝑡)
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Reduction of social contacts correlate with lower 
𝑹(𝒕), but only up to a certain level... 

→ How much is optimal contact reduction? 

Non-Compulsory Measures Sufficiently Reduced Human Mobility in Japan during the COVID-19 

Epidemic. Yabe et al. (2020) https://arxiv.org/abs/2005.09423

https://arxiv.org/abs/2005.09423


Strong correlation between mobility and 𝑅(𝑡)
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Reduction of social contacts correlate with lower 
𝑹(𝒕), but only up to a certain level... 

→ How much is optimal contact reduction? 

How much is “0.65” social contact reduction? 

Non-Compulsory Measures Sufficiently Reduced Human Mobility in Japan during the COVID-19 

Epidemic. Yabe et al. (2020) https://arxiv.org/abs/2005.09423

https://arxiv.org/abs/2005.09423


Trans-SEIR model: overview

• Objective: Understand the role of urban transportation systems in the 
spread of infectious diseases in urban areas

• Spatial movements of urban commuters / Various type of contagion events 

• Can we control the transportation system to stop the spread of infectious diseases?
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Trans-SEIR model: NYC case study

• COVID-19 data and NYC commuting data

• Estimated 𝑅0: 3.295

• Travel contagion: 28.6% of total cases during early outbreak, 
but varies locally due to different transit usage patterns

• West & Lower Manhattan is the intermediate point: people get 
infected here, then bring the disease back for local infections

20
Travel and activity contagions at different locations in 

NYC as of March 26, 2020

Trans-SEIR model results vs reported data  (Divert approx. 

2.5 weeks after the announcement of city emergency)



Trans-SEIR model: NYC case study

• If preventative / early entrance control was placed in NYC: 

• May save 700k commuters from being infected, and delay the peak by 25 days
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The optimal distribution of resources under 

various budget level

Potential disease dynamics with and without transit 

entrance control (Budget of 2,000, No other intervenes) 
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Economic impacts of disasters via mobility analytics
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Quantifying the Economic Impact of Extreme Shocks on Businesses using Human Mobility Data: 

a Bayesian Causal Inference Approach. Yabe et al. (2020) https://arxiv.org/abs/2004.11121

https://arxiv.org/abs/2004.11121


Estimation results for a single business case: 

• An example of a Walmart in San Juan, Puerto Rico
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Irma Maria

Quantifying the Economic Impact of Extreme Shocks on Businesses using Human Mobility Data: 

a Bayesian Causal Inference Approach. Yabe et al. (2020) https://arxiv.org/abs/2004.11121

Training 

period

Testing 

period

Prediction 

period

https://arxiv.org/abs/2004.11121


Estimation results for a single business case: 

• An example of a Walmart in San Juan, Puerto Rico
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Predicted - Observed

Irma Maria

Quantifying the Economic Impact of Extreme Shocks on Businesses using Human Mobility Data: 

a Bayesian Causal Inference Approach. Yabe et al. (2020) https://arxiv.org/abs/2004.11121

https://arxiv.org/abs/2004.11121


Estimation results for a single business case: 

• An example of a Walmart in San Juan, Puerto Rico
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Predicted - Observed

Pre-disaster increase

Post-disaster decrease

Irma Maria

Quantifying the Economic Impact of Extreme Shocks on Businesses using Human Mobility Data: 

a Bayesian Causal Inference Approach. Yabe et al. (2020) https://arxiv.org/abs/2004.11121

https://arxiv.org/abs/2004.11121


Estimation results for a single business case: 

• An example of a Walmart in San Juan, Puerto Rico

28

Predicted - Observed

Pre-disaster increase

Post-disaster decrease

Irma Maria

Quantifying the Economic Impact of Extreme Shocks on Businesses using Human Mobility Data: 

a Bayesian Causal Inference Approach. Yabe et al. (2020) https://arxiv.org/abs/2004.11121

→ Applied method to all businesses in Puerto Rico

https://arxiv.org/abs/2004.11121


Disaster impact by category and location

• Cumulative disaster impacts were more severe in rural areas. 

• Impacts differed across business categories (gasoline stations ↔ universities)

→ We can use these estimates to quantify the $$$ loss from mobility data! 
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Positive impact 

Quantifying the Economic Impact of Extreme Shocks on Businesses using Human Mobility Data: 

a Bayesian Causal Inference Approach. Yabe et al. (2020) https://arxiv.org/abs/2004.11121

https://arxiv.org/abs/2004.11121


30

Mobility Patterns reveals 

Inequality in post-disaster Recovery



Intra-regional inequity in evacuation destinations

• Characteristics of evacuation 
destinations after Irma. 

• High income populations were 
able to reach places with: 

• Longer distance from Miami

• Higher income levels (richer 
neighborhoods)

• Areas with less power 
outage rates

• Areas with less housing 
damage rates. 

33

Effects of income inequality on evacuation, reentry and segregation after disasters. Yabe & 

Ukkusuri. (2020). Transportation Research Part D: Transport and Environment, 102260
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Effects of income inequality on evacuation, reentry and segregation after disasters. Yabe & 

Ukkusuri. (2020). Transportation Research Part D: Transport and Environment, 102260
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Can we model these recovery patterns observed from mobility data?



Modeling recovery of socio-physical systems

Questions: 

• Can we model the recovery of social and physical systems after disasters? 

• Are there interdependencies between these two systems? 

• How do the dynamics differ across communities and industries? 

• What characteristics explain such spatial heterogeneity?

Approach:

• Calibrate a conceptual model of socio-physical dynamics using past data.

• Input: shock profiles of disasters, epidemics etc.

• Output: recovery trajectories of social and physical systems. 
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Case study of regional recovery in Puerto Rico 
after Hurricane Maria (2017)
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Data-driven Inference of Interdependent Dynamics between Social and Physical Systems during 

Disaster Recovery. Yabe, Rao & Ukkusuri. (in preparation)



Data we used to fit the model 

• Recovery of water service deficit 
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• Recovery of social infrastructure

Data-driven Inference of Interdependent Dynamics between Social and Physical Systems during 

Disaster Recovery. Yabe, Rao & Ukkusuri. (in preparation)



Works on smart mobility and ridesharing 
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Impact of transportation network companies on urban congestion: Evidence from large-scale 

trajectory data. Qian et al. (2020) Sustainable Cities and Society

Understanding the operational dynamics of Mobility Service Providers: A case of Uber. Qian et al. 

(2020) ACM Transactions on Spatial Algorithms and Systems

More Uber drivers → more congestionSignificant spatial heterogeneity in search time



Summary

• High Resolution Mobility Data provide answers to important questions in 
Cities:

• Spatio-temporal patterns

• Economic impacts (measured by foot traffic)

• Recovery of communities

• Covid-19 social distancing metrics

• Inequalities in community recovery

• Sustainability Impacts

• Way Forward: Work with ADBI
• Covid-19 Impacts using mobility data

• Estimate economic impacts using mobility data after disasters and Covid-19 type of 
shocks

• Uber, Lyft, and Emerging Mobility Impacts on Cities – e.g. Emissions and 
Sustainability
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We look forward to continuing our work with ADBI on topics of societal relevance!
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