Land Use-Transport Interactions (LUTI) of High-Speed Rail development

Francesca Pagliara

Dep. of Civil Architectural and Environmental Engineering University of Naples Federico II email: fpagliar@unina.it

This is not an ADB material. The views expressed in this document are the views of the author and/or their organizations and do not necessarily reflect the views or policies of the Asian Development Bank, or its Board of Governors, or the govts. they represent. ADB does not guarantee the accuracy and/or completeness of the material's contents, and accepts no responsibility for any direct or indirect consequence of their use or reliance, whether wholly or partially. Please feel free to contact the authors directly should you have queries.

The Land Use-Transport Interactions (LUTI)

Main contribution to the literature on LUTI

✓ Three different functional approaches:

□*high-speed*: passenger-oriented, set on new 300km/h speed lines and non-stop connections between large metropolitan areas (e.g. France).

□*high-capacity*: both for passengers and freight, serving also intermediate cities with up to 250 km/h train services, developed partly on renewed existing lines (e.g. Germany).

Denhanced intercity network: speeding up the Intercity service till 225 km/h, combined with frequent coincidences in all the stations to other destination on the network (e.g. Switzerland and England).

If the infrastructure is HIGH SPEED RAIL (HSR)?

- □ HSR implementation plays an important role in reshaping travel patterns and activities of people, consequently changing the ways cities develop.
- □ Motivations to develop HSR systems for many countries are (Sussman, 2011):
 - ... not only:
 - Increasing transport infrastructure capacity
 - Providing a "green" transport alternative
 - ... but also:
 - Promoting economic growth and regional development

ISSUES

- □ HSR and megalopolis formation
- □ HSR and tourists destination/location choice
- □ HSR and temporary offices location choice
- □ HSR and land market
- □ HSR and equity issues

Multi-disciplinary approach: <u>Engineering, Economics,</u> <u>Geography, Political Science, Sociology, Psychology</u>

HSR and and megalopolis formation

RESEARCH ON HSR SINCE 2008

Travel time between Napoli and Roma 1 hour now, 2 hours before HSR

HSR and and megalopolis formation

O-D matrix between Naples and Rome (trips %)

							_									
	ORIG	NAPLES	PROV. OF NAPLES	ROME	PROV. OF ROME	OTHER				DEST	NAPLES	PROV. OF NAPLES	ROME	PROV. OF ROME	OTHER	
	NAPLES ROME	0 53	0 33	86 0	10 0	3 14	Weekday			NAPLES ROME	0 62	0 32	88	7 0	5 6	Weekday
R	NAPLES ROME	0 55	0 38	91 0	8 0	1 7	Saturday		0	NAPLES ROME	0 70	0 28	86	7 0	8 2	Saturday
່ວ	NAPLES ROME	0 61	0 26	81 0	10 0	9 13	Sunday	ľ	×	NAPLES ROME	0 70	0 25	87	4 0	9 5	Sunday
	NAPLES ROME	0 57	0 32	85 0	10 0	5 11	Total			NAPLES ROME	0 68	0 28	87	6 0	7 4	Total
							-									
	ORIG	NAPLES	PROV. OF NAPLES	ROME	PROV. OF ROME	OTHER				DEST	NAPLES	PROV. OF NAPLES	ROME	PROV. OF ROME	OTHER	
	NAPLES ROME	0 68	0 24	96	2 0	2 8	Weekday			NAPLES ROME	0 85	0 15	92	3 0	5 0	Weekday
s	NAPLES ROME	0 62	0 29	91 0	1 0	8 9	Saturday		s	NAPLES ROME	0 73	0 22	91	2 0	7 5	Saturday
Ť	NAPLES ROME	0 66	0 27	82 0	6 0	12 6	Sunday	1	ш	NAPLES ROME	0 80	0 20	88	3 0	9 0	Sunday
	NAPLES ROME	0 66	0 26	92	2 0	5 8	Total			NAPLES ROME	0 78	0 19	90	3 0	7 3	Total

COMMUTING FLOWS EVERY DAY

□ HSR has the potential for megalopolis formation.

❑ **Defining megalopolis**: large agglomerations, megaregions, mega-cities, megaplexes, megapolitan regions, etc.

□ Formation of *Megalopolis - an integrated economic urban complex -* created by fusion of multiple cities connected by high-speed transportation of 200-300 km/h (Sussman, 2011).

□ A geographical area that shares a common labor market and a common market for household and business services" (Blum et al., 2009).

POSITIVE IMPACTS:

•Larger labor markets and commercial markets, thus greater productivity.

• "Better and more effective than cities alone in meeting the economic and social challenges" (Ross, 2009).

HSR and megalopolis formation

- □ How one would know that a megalopolis emerges as a result of HSR deployment?
- □ **No precise parameters**, but some considerations arise:
 - Significant increases in one-day round trips between a pair or group of cities.
 - Increase of generated induced demand.
 - Induced demand for business trips.
 - Increase in the number of daily commuters.
 - Decrease in overnight hotel stays.

However, these parameters may be affected by factors other than HSR infrastructure, making the causal relationship difficult to verify.

Potential corridors to analyse are:

- □ Frankfurt Cologne in Germany
- Madrid Ciudad Real in Spain
- □ Corridors in Japan, China

 Megalopolises or megaregions present the need for planning on a new spatial scale. This implies institutional change.

Regression models

ΔPOP_t	is the population change between the two cities under analysis for every year t.
Δ HousePrice _t	is the house price change between the two cities under analysis for every year t
Growth-Rate _t	is the weighted average population growth rate change between the two cities under analysis (change measured for 1000 inhabitants) for every year t
Res-Dens _t	is the average residential density change between the two cities under analysis for every year t (no. of inhabitants/km2).
Migration-Rate _t	is the difference between the number of immigrates and that of the emigrates between the two cities under analysis for every year t (change measured for 1000 inhabitants).
GDP _t	is the Gross Domestic Product change between the two cities for every year t;
UNEMP-RATE _t	is the unemployment rate change between the two cities for every year t;
TIME-HSR	is the HSR travel time expressed in minutes along a given corridor;
COST-HSR	is the HSR travel cost expressed in Euros along a given corridor
FREQ-HSR	is the HSR frequency expressed in number of runs along a given corridor
COMF-HSR	is the HSR comfort, which is a dummy variable equal to 0 before the inauguration of the HSR line between the two cities and 1 after the inauguration

COMMUTING FLOWS SHOULD BE CONSIDERED AS DEPENDENT VARIABLES. MOREOVER OTHER VARIABLES TO BE INTRODUCED SHOULD BE FOR EXAMPLE THE SALARIES CHANGES. THERE IS NOTHING IN THE CURRENT LITERATURE FROM A QUANTITATIVE PERSPECTIVE

HSR and megalopolis formation

Corridor RONA – analysis based on POP

	Coefficient					
	$\beta_{\text{Growth-Rate}}$	$\beta_{\text{Res-Dens}}$	$\beta_{Migration-Rate}$	$\beta_{\text{FREQ-HSR}}$	$\beta_{\text{COST-HSR}}$	$\beta_{\text{TIME-HSR}}$
Value	0.2	0.45	-0.25	0.75	-1.25	-2.5
	(4.32)	(4.51)	(-4.38)	(7.74)	(-3.69)	(3.70)
ρ^2	0.58					
ρ_{adj}^2	0.57					

<u>Corridor RONA</u> – analysis based on *HousePrice*

	Coefficient				
	$\beta_{\text{Res-Dens}}$	$\beta_{\text{UNEMP-RATE}}$	$\beta_{\text{FREQ-HSR}}$	$\beta_{\text{COST-HSR}}$	$\beta_{\text{TIME-HSR}}$
Value	0.09	-2.60	0.42	-0.58	-0.15
	(3.74)	(-4.06)	(3.61)	(-2.15)	(-2.10)
ρ^2	0.55				
ρ_{adj}^2	0.54				

HSR and tourists destination/location choice

High-speed rail stimulates tourism

2012-March-30 08:53 Shenzhen Daily

PASSENGERS with high-speed train tickets from Shenzhen or Guangzhou to Wuhan can enjoy discounts of 30-40 percent when visiting major tourism attractions in Central China's Hubei Province in April, a promotion of Hubei tourism authority said Wednesday.

Economy-class tickets for high-speed trains from Shenzhen to Changsha, capital of Hunan Province, and Wuhan, capital of Hubei Province, on April 1, the opening day of Shenzhen-Wuhan High-Speed Rail, have sold out.

The high-speed rail, which cuts the Shenzhen-Wuhan journey to four hours, is expected to greatly stimulate tourism along the line.

"Hubei is now better connected with Pearl River Delta cities and we are inviting Guangdong travelers to enjoy sakura flowers in Wuhan University and visit our tourism attractions, such as Yellow Crane Tower, Three Gorges Dam and Donghu Lake," Zhang Dahua, Hubei tourism chief, said at a promotion Wednesday.

Shenzhen travel agencies are also mulling package tours to Wuhan and Changsha.

According to Liu Ke, marketing manager of China Travel Service Shenzhen Co., the three-day trip to Wuhan costs 2,000 yuan (US\$317.25).

It costs 540 yuan for an economy seat to Wuhan and 390 yuan to Changsha.

According to line operator Guangzhou Railway Group, there will be 20 pairs of trains a day between Shenzhen, Changsha and Wuhan and the intervals for departures at Shenzhen North Railway Station are between 30 minutes and 90 minutes.(Han Ximin)

HSR and tourists destination/location choice

□ Three tourist destinations: Madrid, Rome and Naples.

□ Investigating the impact of HSR on the choice of a tourist destination.

□ HSR has an impact in the case of Naples.

□ For Madrid and Rome an impact exists since HSR is chosen for visiting cities close to them. HSR is not a key determinant of tourists'choice of destination since the majority are international tourists arriving by air.

□ An empirical analysis has been carried out: dataset containing information both on tourism and transport for 99 Italian provinces, during the 2006-2016 period.

□ The dataset is composed of **1089 observations** (99 provinces x 11 years).

□ The methodology adopted: Panel data regression models since data are of panel type.

VARIABLES DESCRIPTION

Variable	
	DEPENDENT
IT_Tourists	number of Italian Tourists
FOREIGN_Tourists	number of Foreign Tourists
	INDEPENDENT
HSR	binary variable taking value 1 if HSR is available,
	0 otherwise
HUB2	binary variable taking value 1 if the airport is a
	second level hub of a network carrier; 0 otherwise
Low-Cost	number of operating bases of low-cost airlines
GDP	is the Gross Domestic Product
SEA	dummy variable equal to 1 if the destination is on
	the sea; 0 otherwise
Attraction	number of activities attracting tourists in a given
	destination (e.g. sum of museums, historical sites,
	etc.)
Robbery	number of robberies registered in a given
	destination
Crime	number of crimes reported in a given destination

FACTORS INFLUENCING TOURISTS 'CHOICES

Variable	Italian Tourists	Foreign tourists
	(t-student)	(t-student)
HSR	0.0281 (2.98)	-
HUB2	0.8558 (17.09)	1.4209 (22.63)
LOW-COST	-	0.0024 (2.59)
GDP	0.0031 (4.56)	0.0050 (7.74)
ATTRACTION	0.0006 (10.07)	0.0013 (22.22)
SEA	0.2277 (4.88)	0.3389 (7.05)
CRIME	-1.5760 (-3.74)	-2.1553 (-4.28)
ROBBERY	-	-0.0041 (-6.03)
Const	1.9994 (38.26)	1.3122 (20.92)
\mathbf{R}^2	0.32	0.48

OTHER MODELS SPECIFICATIONS AND OTHER VARIABLES SHOULD BE TESTED. WHAT WILL BE THE IMPACT OF COVID-19 ON TOUSISTS' TRAVEL CHOICES?

HSR STATIONS: PIECES OF ARTWORK

HSR station at Reggio Emilia (Italy) by S. Calatrava

HSR station at Liège-Guillemin (Belgium) by S. Calatrava

HSR STATIONS: PIECES OF ARTWORK

HSR station at Haramain (Saudi Arabia) by N. Foster

HSR station at Naples-Afragola (Italy) by Z. Hadid

BUT THEY ARE ALSO WORKPLACES...

.....Investments in HSR systems can:

- \checkmark increase the number of business travellers
- \checkmark Encourage the development of offices inside and around stations

What are temporary offices?

Fully-equipped offices to be rented by mobile workers for a given time-period.

"Mobile workers" are all the professionals who spend part of their time working in different places. They usually do not own head-offices.

Regus is the world's leading provider of flexible workspaces with 1500 locations globally.

	%
Regus offices were chosen in Naples because they were	37
inside the HSR station	
HSR was chosen because the Regus services were	
cheaper	3
HSR was chosen because of the provided services	12
Regus offices were chosen because of the provided	
services	49

□37% of the clients have chosen temporary offices because of their location being inside the HSR station, being also served by metro lines.

Surprisingly: these services have been also used by workers with low monthly income.

Temporary offices inside the HSR station are rented also by **local workers** and not only by mobile workers choosing HSR.

PROPOSE MODELS TESTING THE IMPACT OF HSR ON TEMPORARY OFFICES LOCATION CHOICE – NO CONTRIBUTION IN THE CURRENT LITERATURE

HIGH SPEED ONE IN UK

St Pancras International HSR Station in Camdem Inaugurated in 2007

Stratford International HSR Station in Newhman Inaugurated in 2009

Within Band1 and Band2 (*catchment area*), properties located within walking distance from the station **benefited from the improved accessibility** w.r.t. properties located 1000 m far from the station.

Hedonic pricing method (Rosen, 1974): P = β X + ϵ

Dependent Variable	Propery price	Hundreds of thousands £
Independet Variables		
Temporal	Sold year	Twelve dummy variables
Structural	Detached SemiDetached Terraced Flat NewHouse	Dummy variables
Zone	CarPark Car Park presence ResidentialRoad House placed in a residential road	Dummy variables
Accessibility	DistTube Distance from nearest Tube Station [km] DistMotWay Distance from Motorway access [km] TrainFreq Train frequency in the nearest Tube Station [tr/hr]	Space variables
Image	Band1YesHs Band2NoHs Band3NoHs DisturbArea Image gain or loss of a property	Dummy variables

Stratford International	SemiLog Model		SemiLog Model		Log Model		Box-Co Mo	ox LHS odel	Box-Cox BHS Model	
	β	t-student	β	t-student	β	t-student	β	t-student	β	t-student
Costante	.293	4.991	1.680	14.036	.182	5.635	.272	6.365	.288	5.426
Year2	.266	13.117	.337	8.142	.266	13.077	.290	10.773	.282	11.487
Year3	.509	24.751	.668	15.930	.508	24.680	.566	20.712	.547	21.967
Year4	.669	31.453	.947	21.843	.668	31.404	.769	27.250	.736	28.587
Year5	.657	29.796	.921	20.499	.656	29.764	.753	25.732	.721	27.015
Year6	.760	34.108	1.102	24.284	.759	34.064	.884	29.903	.843	31.261
Year7	.825	39.101	1.248	29.042	.824	39.035	.976	34.888	.926	36.271
Year8	.922	45.417	1.492	36.078	.920	45.324	1.122	41.675	1.055	42.951
Year9	.717	29.818	1.093	22.299	.717	29.800	.850	26.621	.805	27.646
Year10	.781	32.914	1.220	25.223	.782	32.926	.936	29.740	.883	30.762
Year11	.770	40.182	1.179	30.183	.773	40.237	.920	36.111	.868	37.411
Year12	.803	32.285	1.249	24.639	.807	32.344	.966	29.206	.909	30.179
Flat	287	-29.713	502	-25.532	285	-29.596	361	-28.252	337	-28.852
CarPark	.030	2.399	.087	3.365	.028	2.228	.047	2.792	.042	2.750
ResidentialRoad	.030	2.743	.039	1.750	.027	2.484	.030	2.080	.032	2.384
DistTube	035	-3.189	056	-2.546	047	-3.153	054	-2.756	091	-5.139
DistMotWay	143	-5.030	293	-5.061	017	-4.886	023	-5.059	044	-2.942
DisturbArea	032	-2.549	072	-2.816	029	-2.330	040	-2.417	039	-2.554
Band1YesHs	.232	6.973	.419	6.189	.249	8.028	.321	7.797	.287	7.418
Band2NoHs	.234	13.736	.430	12.415	.232	13.756	.304	13.578	.281	13.633
Band3NoHs	.193	12.617	.313	10.062	.189	12.403	.233	11.550	.222	12.006
λ							0.451		0.316	
R^2 Adj.	.5	581	.478		.581		.545		.558	

St Pancras	Sem	iLog	SemiLog Model		Log Model		Box-Cox LHS Model		Box-Cox BHS Model	
International	Mo	del								
	β	t-student	β	t-student	β	t-student	β	t-student	β	t-student
Costante	0.725	8.847	1.705	5.009	0.623	7.624	0.562	9.34	0.652	5.337
Year2	0.127	3.93	0.283	2.092	0.127	3.898	0.105	4.387	0.16	3.307
Year3	0.171	5.22	0.404	2.942	0.168	5.095	0.136	5.589	0.221	4.5
Year4	0.247	7.673	0.667	4.97	0.24	7.441	0.187	7.884	0.33	6.876
Year5	0.3	9.473	0.751	5.688	0.291	9.187	0.229	9.821	0.394	8.34
Year6	0.396	12.586	0.991	7.55	0.389	12.344	0.305	13.158	0.524	11.165
Year7	0.59	18.14	1.626	12.038	0.573	17.681	0.438	18.34	0.802	16.57
Year8	0.573	15.885	1.604	10.674	0.56	15.515	0.428	16.106	0.782	14.536
Year9	0.542	13.888	1.674	10.289	0.531	13.589	0.396	13.77	0.761	13.082
Year10	0.658	21.076	2.042	15.672	0.652	20.832	0.486	21.089	0.93	19.967
Year11	0.677	21.491	2.109	16.044	0.671	21.256	0.5	21.539	0.956	20.353
Year12	0.773	13.442	2.879	11.993	0.766	13.286	0.556	13.118	1.137	13.254
Flat	-0.185	-2.464	-0.32	-1.021	-0.186	-2.476	-0.146	-2.643	-0.238	-2.127
CarPark	0.121	4.801	0.393	3.725	0.122	4.811	0.092	4.915	0.172	4.562
ResidentialRoad	0.104	6.437	0.264	3.901	0.106	6.5	0.08	6.72	0.143	5.909
DistTube	-0.164	-4.621	-0.073	-1.171	-0.033	-2.18	-0.026	-2.345	-0.099	-3.166
Band1YesHs	0.498	7.112	2.807	9.321	0.521	7.211	0.323	6.061	0.87	8.198
Band2NoHs	-0.167	-5.111	-0.524	-3.85	-0.153	-4.684	-0.107	-4.461	-0.238	-4.885
Band3NoHs	-0.229	-8.516	-0.686	-6.092	-0.217	-8.024	-0.158	-7.924	-0.322	-8.025
λ			•				-0.302		0.334	
R^2 Adj.	0.	51	0.5	501	0.5	507	0.4	177	0.5	527

FEW CONTRIBUTIONS ON HSR IMPACTS ON THE LAND MARKET

DISTINCTION BETWEEN SOCIAL EXCLUSION AND POVERTY

According to **Silver (1994)** *social exclusion* is "A multidimensional <u>process of progressive social</u> <u>rupture</u>, <u>detaching groups and individuals</u> from <u>social relations</u> and <u>institutions</u> and <u>preventing them</u> from full <u>participation</u> in the <u>normal</u>, <u>normatively</u> prescribed <u>activities</u> of the <u>society</u> in which they live."

□ <u>According to the UN (1996) poverty is</u> "A condition characterised by <u>severe deprivation</u> of <u>basic</u> <u>human needs</u>, including <u>food</u>, safe drinking <u>water</u>, <u>sanitation facilities</u>, <u>health</u>, <u>shelter</u>, <u>education and</u> <u>information</u>".

Low income categories are not necessarily experiencing social exclusion.

SOCIAL EXCLUSION AND TRANSPORT: WHAT IS THE RELATIONSHIP?

"The process by which people are prevented from participating in the economic, political and social life of the community because of <u>reduced accessibility to opportunities</u>, services and social networks, due in whole or part to insufficient mobility in a society and environment built around the assumption of high mobility".

(Kenyon et al., 2003)

The seven social exclusion factors related to transport (Church et al., 2000)

Spain – UK – Italy: Economic, Time-based and Geographical exclusion

Spain – UK – Italy: Economic, Time-based and Geographical exclusion

There is still a lot to do

- □ Is HSR a priori excluding some socioeconomic categories (such as low-income people, immigrants, women, etc.)?
- Analysis of the socioeconomic profile of HSR users.
- Factors excluding non-HSR users from choosing HSR as an alternative transport mode.
- Are destinations not served by HSR excluded from a possible development of tourism and other growth factors?
- Can the introduction of more than one railway company competing on the same HSR network (such as Trenitalia and NTV in Italy) solve the question of social equity?
- Policies to make HSR available to all socioeconomic users (e.g. new investments in low-cost HSR systems, such as Ouigo).