

Sustainable Water Management Based on Smart Water Management

Dr. Sangyoung Park Water Resources and Project Management Specialist

Contents

- Definition of Smart Water Grid
- Key Technologies
- Benefits and enablers
- Policy recommendation
- International collaboration- on going projects
- Challenges and opportunity in Indonesia
- Institutional arrangement for SWM implementation

Issues for Sustainable Water Management

Water Scarcity and Aging Infra

- Water Stress
- Climate Change

MORE THAN 1/3 of the

In DEVELOPING COUNTRIES

Source: Fond and Agriculture Organization of the United Nations with Clean Julya analysis.

Note: An area is requirementing: "about for," water supply when eather expelled drug before 500 cubic meters (in.3) per person.

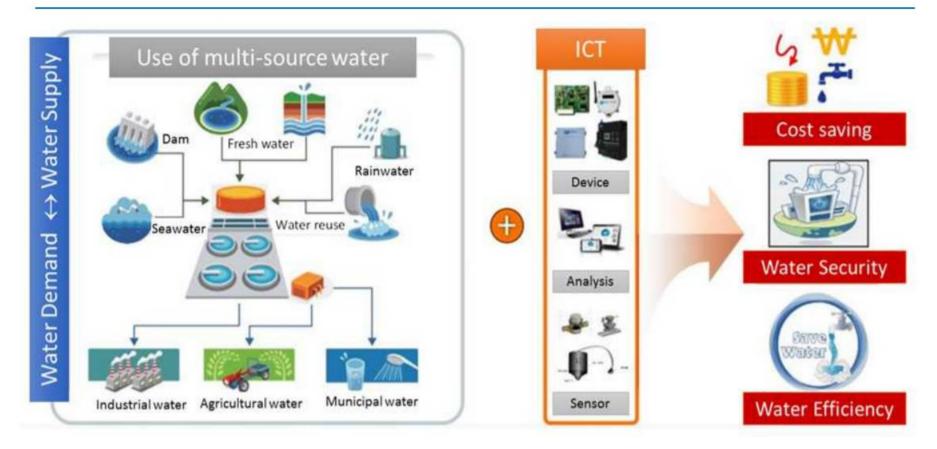
Wellet "free; referring amount eather expelled below 1,700 or Jupe person.

- Water Loss
- Water Issues in Developing Countries

Source: Mijor & The Blook Bank with Clean Edge analysis

Background and Necessity

"Smart" is the main keyword in the 21th century



Definition of Smart Water Grid

"Smart Water Grid" is a new platform for intelligent and integrated water management. It allows high reliability, diversification of water sources for sustainability, save NRW & energy and real time monitoring.

Issues and SWG Solution Management

Two Major Issues to Be Addressed

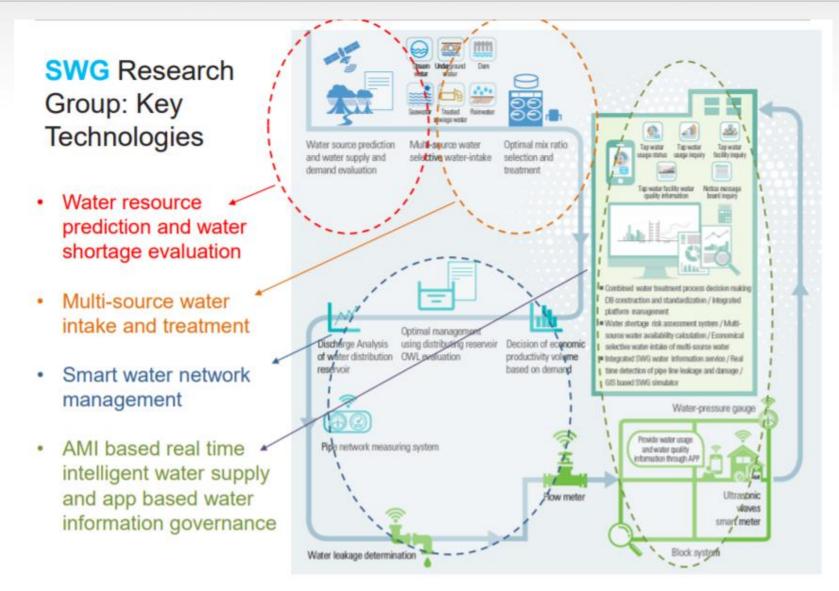
Water Shortage

Use of multi-source water

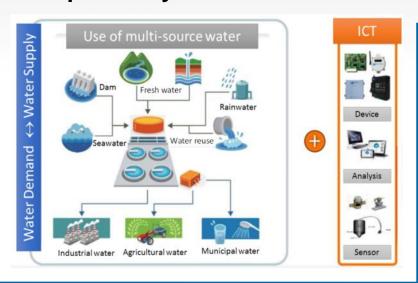
- Fresh water
- river, dam, lake, ground water, surface water
- Non-conventional water
- seawater, brackish water, rainwater, and reclaimed water

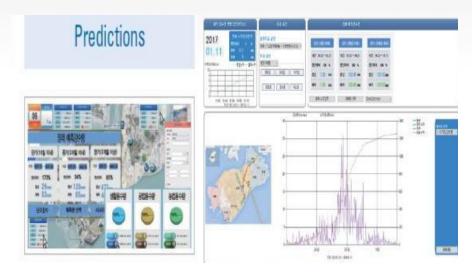
Non Revenue Water (NRW)

Advanced metering infrastructure for water(AMI)

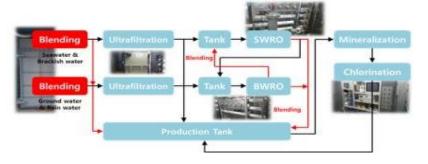

 Automated, two-way communication between a smart water meter and a utility company

Key Technologies SWG





Water resource prediction and water shortage evaluation


In-depth Analysis of Water Demand and Water Resources

Pre Blending: Recovery rate improvement and treatment load decrease through high TDS, NTU reduction

Inter-Blending : SWRO inflow, TDS reduction and BWRO concentrated treatment

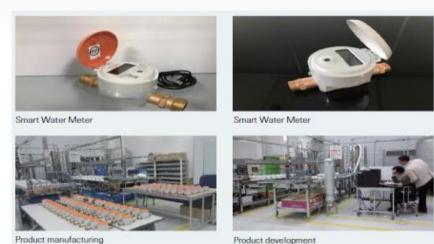
Post Blending : Mineral supply and economical securing of necessary quantity

Multi-resource water management and treatment

Hybrid water treatment technologies for multi-source water

Selective water intake program of multi-source water

Decision making support program for water treatment combination process



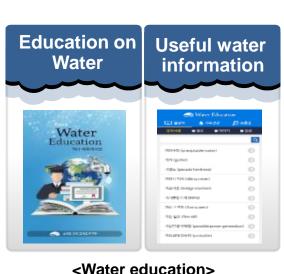
Advanced Metering Infrastructure (AMI) for Real Time Intelligent Water Supply and Monitoring

AMI network device with Certification conformance

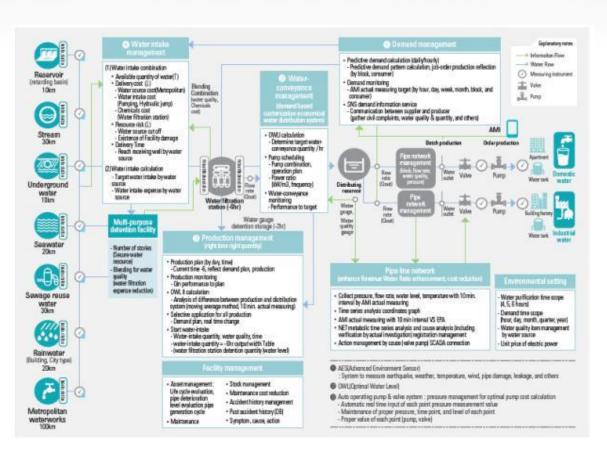
Smart Water Meter for multi-resource

MSWG pipe network gauge / Leak detection sensor

Optical Sensor for Water Quality


AMI based real time intelligent water supply and app based water information governance

Smart phone apps for bidirectional and better customer services


Water care>
Australian
Aid

<Water Tainment>

Smart water network management

Integrated and Intelligent Management of Water Supply

Smart Water Management System

Decision Supporting System

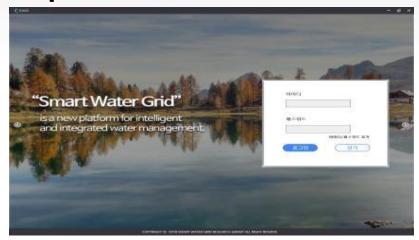
Scope of procedure including Informatization task and performance evaluation

Information

Standardization of data and management exchanged among organizations

nformatization

Standardization including application services and infrastructure



Integrated Database for Smart Water Management

Integrated water management system (1/2)

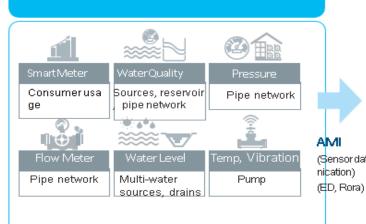
Operation Platform of Smart Water Grid

Login screen

Smart water statistics (SWT-STAT) supply - Flow meter (reservoir)

Smart water statistics information (SWT-STAT) Measurement instrument status DATA

Smart Water Statistics Information (SWT-STAT) Usage - usage by usage



Integrated water management system (2/2)

Integration of functions for integrated decision making

Sensor Data Source

Reference Layers

- GIS (terrain, network/pump/valve, cus) tomer)
- HMI (remote monitoring, control, operation)
- Real -time repair model (SW-Loop)
- · Smart Database (source/demand by
- application)
 - Data Normalization (Refining, Filtering)
- Pattern, Trend

mart Water Statistics Real-time demand-

- Usage Life/Agriculture/ Industrial Water
- Flow
- Flow Meter (Reservoir)
- · Water withdrawal/level
- Network status data
- Flow / Water pressure/ Water quality / Pump
- Energy Analysis Energy
- Use Rate

SWG-DSM

supply analysis

- Demand forecast
- Application (Life/Agriculture/Indus trial)
- By region.
- Analysis of water s upply
- · Available quantity
- Supply plan
- Multi-source combination
- Water distribution by purpose

SWG-DSS

Smart water operation decision making

Real-time water operation System water supply status Facilities Operation Status

- Emergencywater operation
- Emergency system operation
- Shredder System Optimization Single House Furniture Service
- Emergency SOP

SWG-HyNet

and monitoring

 Real-time hydraulic analysis

flux

Water pressure

Flow rate

Residual chlorine Stagnation zone

System analysis monitoring Leakage accident Water pressure distribution

Water quality accident

SWG-DBM

Smart database

Data normalization Data processing (Screen, Filtering) Data profiling Metadata

- Data User Analysis
- Pattern analysis
- Operational DB (Dav.) Week, Month, Year)
- Remote meter reading , highland

SWG-APP.

Consumer participation

- Water diary
- Water care
- Water Community
- Welfare services for the elderly living alone

Summary

Smart Water Grid: Smart Solution for Smart Future

- Many problems that Asian countries are currently facing with can be solved by applying SWG technologies.
- NSWGRG in Korea is willing to collaborate by sharing the experiences and solutions.
- Depending on the situations in different countries, SWG technologies can be fully customized to provide a costeffective way to solve various water-related problems.

* Source: Prof. S. Lee and Prof. KT Yum, 2018 Indonesia-Korea One-day Workshop on Smart Urban Water Works Management

Benefits and Enablers of Smart Water Management: Focusing on SWM Case Study

2. What is Smart Water Management?

Box 1. Definition of Smart Water Management

Smart Water Management (SWM) is the use of Information and Communication Technology (ICT) to provide real-time, automated data for use in resolving water challenges through IWRM.

SWM can be used for planning and operational purposes, from daily use to organisational and policy planning at a range of scales, across contexts and regions.

* Source: https://www.iwra.org/swmreport/

** Source: Dr. Jinsuhk Suh, 2019 SWG Int' I Conf., K-water Institute

Summary of the Case Studies

√10 case studies, 29 countries, over 40 organizations

Case study location	Project Name	SWM Solution
South Korea (national)	K-HIT	Flood and drought integrated network
Paju, South Korea	Paju Smart City	Water quality real-time monitoring for drinking water
Seosan, South Korea	Seosan Smart City	Smart sensors and real-time display increased leak detection and community satisfaction
Paris, France	SIAAP	Integrated network for improved real-time water quality in sanitation
China, Guantao County	Handan Pilot	Groundwater monitoring and modelling to reduce over abstraction
Mexico, Mexico City	PUMAGUA, UNAM	Smart sensors for drinking and wastewater quality and leak detection
Thailand, Tanzania, Kenya, Uganda, Rwanda, Burundi, Benin, Burkina Faso, Cote d'Ivoire, Ghana, Mali and Togo	Flood and Drought Monitoring Tools (FDMT)	Flood and drought monitoring and planning using satellite data
Zimbabwe, Mozambique, Tanzania	Small-scale agriculture productivity and efficient irrigation in Southern Africa	Efficient irrigation using real-time soil monitors and an Agricultural Innovation Platform (AIP)
Spain, The Netherlands, United Kingdom and France (SW4EU)	Smart Water for Europe (SW4EU)	Four demonstration sites addressing leak detection, water quality, community satisfaction and energy optimization using smart sensors and DMAs
Canada	Stormwater SmartGrid	Real-time rainwater collection and monitoring for household stormwater management

Key barriers

Factors limiting successful SWM implementation

- Lack of initial support/investment
- Access to skills/capacity to use SWM solutions
- Access to infrastructure or resources (e.g. electricity)
- Evolving technology/upgrades (high costs)
- Lack of compatibility across SWM solutions
- Hesitation to replace traditional infrastructure
- Lack of policy incentives

Key enablers

Factors for successful SWM implementation

- Political commitment at all levels
- Policy, legislation and regulation support
- Combining the use of SWM tools with other methods
- Strong stakeholder engagement from the beginning
- Multidisciplinary approach
- Long-term investment for ongoing R&D
- Capacity development, training and education

(Social Aspect)

- Access to clean water and sanitation through water treatment and monitoring
- Health improvements through increased access to clean, safe water
- Improved livelihoods through job creation, greater opportunity for further education, higher productivity and other opportunities
- Increased training and capacity building for the local community and staff
- Increased sharing of solutions to support sustainable development
- Increased decision-making opportunities through increased engagement and knowledge-sharing
- Greater collaboration with community through engaging with local stakeholders at the beginning of the project
- Greater security by improving water security and increased resilience to climate change
- Increased trust in water suppliers and the safety of water sources
- Improved access to data and information through real-time data sharing with all water users
- Increased gender equality through increased opportunities for capacity building and further education
- Reduced conflict over water access leading to increased trust and willingness to engage in collective action

(Economic Aspect)

- Increased efficiency in irrigation systems and wastewater treatment systems
- Reduced waste by the reduction of water loss through leakages
- Job and opportunity growth through job creation through SWM project research, design, development and implementation
- Improved capacity in water systems improving their capacity to manage flows and reduce damage during storms/floods
- Reduction in future infrastructure costs by integrating smart technology tools to improve capacity/efficiency, resulting in less need for additional infrastructure
- Mobilisation of funds from public and private sources, as well as international funding sources

(Environmental Aspect)

- Improved water quality through reduced pollution and contamination in waterways
- Improved ecosystem health and protection through improved water quality and quantity
- Reduction in groundwater depletion through reduced over abstraction
- Reduced land degradation through flood and drought management and reduced nutrient loss in the soil
- Reductions in CO² emissions through energy optimisation and reduced energy consumption
- Reduced water consumption through leak detection and reduced demand and increased reuse

(Governance Aspect)

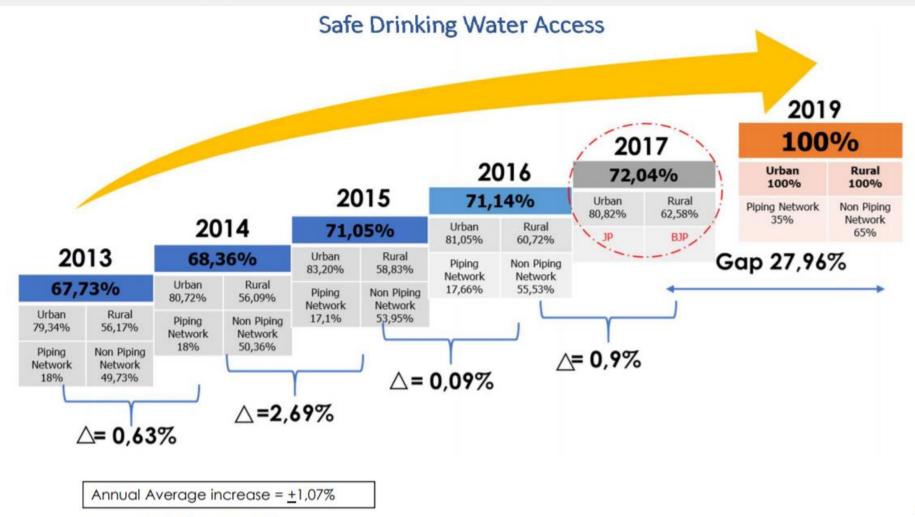
- Improved management and knowledge, as measurement is critical for effective management
- Improved accuracy of data, as real-time data should also be SMART (specific, measurable, actionable, relevant and time-bound) data
- Increased community-led decision-making opportunities as water users can make decisions based on real-time water use and information
- Improved transparency as water users have access to water use and quality in realtime

(Technology Aspect)

- The opportunity to test and develop new and innovative tools for water management
- Innovative technologies created with the potential for commercialization
- **Identification of the remaining gaps** in technology adoption (e.g. standardisation of software and tools to make it easier to adopt the 'right' mix of tools for each situation
- Showing the potential for SWM tools to deliver successful outcomes and in turn lead to significant social, environmental, governance and financial impacts

Policy Recommendations

Strategies	Policy direction	
SWM for an improved quality of life (Society)	 Facilitate adoption of SWM tools, especially in developing countries, to support access to basic services, and to support equality for poverty reduction, public health and quality of life. Include capacity development, technology sharing, collaborative business models and community governance and decision-making opportunities. 	
	 Build trust and community engagement using SWM tools in areas where the community feel unsafe using the local water sources. 	
	3. Empower people in developing countries with smart tools to reduce the time spent on water management and increase farm income and time available for other activities (e.g. further schooling, and additional work opportunities).	
Investment in SWM for improved resilience and sustainable development	4. <u>Strengthen collaboration across and within sectors</u> to provide opportunities for networks to share information and data to assist with effective and efficient water management.	
(Economy)	5. Value non-financial benefits (e.g. environmental, social, governance and technical benefits) as equally important as financial benefits for SWM implementation, as they contribute to building resilience to the effects of climate change and increasing populations.	
	6. Support long-term investments for SWM implementation to enable adequate research, development and testing.	


Policy Recommendations (Cont.)

SWM for protecting and conserving	 Introduce policies, regulations and incentives to drive environmental and ecosystem protection through use of SWM. 	
water resources and ecosystems	8. Encourage SWM solutions to increase water quality, manage demand and use, water reuse, reducing groundwater depletion and increase energy efficiency, etc.	
(Environment)	 Introduce SWM solutions for climate adaptation plans for flood and drought planning and management and major storm events. 	
Support evolving smart technology development and adoption	10. Develop standards to ensure all SWM technologies are compatible (can communicate) with each other to enable tools to be purchased across various suppliers to enable those implementing SWM to create the right set of tools for each context.	
(Technology)	11. Support on-going research, testing and development of SWM tools to advance them to a point where they are robust and require minimum maintenance and are ready to be commercialized (Government policies that support taking SWM tools from R&D to market).	
	12. Support technology to assist in regions without built infrastructure or the adequate resources (e.g. electricity), as currently SWM infrastructure is (almost always) reliant on built infrastructure	
Building capacity and networks for increased resilience and	Empower people, especially those in developing countries, by providing them with SWM tools, data and capacity development and education to enhance/ support local decision-making.	
collaboration (Governance)	14. Strengthen the capacity to adapt to climate change by adopting SWM planning and operational technology.	
	15. Plan for water disasters in advance by creating proactive policies instead of reactive policies.	

National Target Toward Safe Drinking Water Access

Challenges Toward SWM Application in Indonesia

Lack of digitization/data, heavy at the start to implements ICT on low performance PDAM. Indonesia's decentralised
market means that each local
government is responsible for
policy decision making and
enforcement, needs
understanding the regulatory
framework that will affect how
you do business in the
Indonesian water market.

Security Issues, Several cybersecurity issues should be taken into account, particularly about consumer protection of personal data.

Unequal internet access, especially outside of Java Island.

Manpower and Institutional Constraint, classical issues where the placement of employees does not match their expertise. NRW (non-physical).

Regulations are always
behind technological
advancement. It should be
designed in such a way that
it will not hamper creativity
and innovation in tackling
societal challenges.

* Source: Directorate of Water Supply Development, DGHS, MPWH, 2019

Opportunity Toward SWM Application in Indonesia

Technological advancement.

Technological advancements have helped businesses save time and cost of production, they manage these advancements to gain competitive advantage. Right now, we can easily find a high-quality smartphone, sensors (IoT devices) with an affordable price. As a result, ICT things is not a luxury good anymore.

Increase coverage of a mobile network. There is a fierce competition among operators to become the best in the country through massive infrastructure deployment. As a result, more and more people now have an access to the internet.

Good level of awareness. Most PDAMs interesting about the idea about optimization using ICT things. The level of implementation of ICT things is various, depends on size of PDAM.

Social media and instant messaging as "killer apps". The introduction of Whatsapp, Facebook and Twitter in Indonesia played a key role in boosting data penetration in the country. Its creates new habits.

Players in this industry are still few in Indonesia, especially in water supply sector.

Vendors, can be easily found through the marketplace.

Source: Directorate of Water Supply Development, DGHS, MPWH, 2019

Institutional Arrangement for Implementation

Cipta Karya

- Master plan of SWM in national level
- National Standard for SWM implementation
- Financial arrangement

Balai

- -Master plan of SWM in local level
- -Pilot Demonstration Project

PDAM

- Implementation of SWM
- Capacity building
- Operation and Monitoring

Development Partners

- -ADB, EDCF etc.
- -K-water
- -Smart Water Grid Research Group
- -Private sectors

International Cooperation: On-going Project

Vietnam – Hai Duong

Status of Vietnam

Hải Dương

- Has rich water resources but 40% of underground water contains arsenic
- Surface (stream) water shows frequent variability of seasonal turbidity
- High level of nitrate nitrogen in element due to domestic sewage inflow
- Infrastructure investment for public drinking water estimated at 400 million dollars by 2018; Investment for waste water treatment to rise to 350 million USD (GWI, 2014)

Overview ➤ Administrative unit : Province

- ► Location : Near Hanol (51 lon)
- ▶ Province name : Hai Duong
- ► Area: 1,684km²
- ▶ Population: 1,570,800

Visited NAWAPI organization

Concluded MOU with waterworks company in Hai Duong

Toured Hai Duong purification plant

Interviewed deputy governor of Hai Duong

Project procedure

MOU concluded between NAWAPI and SWG research group.

Discuss SWG demonstration with governor of newly designated province of Hung

Jan. 28, 2016 Publication of first joint research report

Study on application of Kinna SWG technology to ASEAN country by K-water accremic policy think tank, NAWAYS

April 2016 Joint research agreement on business model development for entering Vietnamese

July 2016 Specific agreement on phased application of SWG technology and system

Midterm examination announcement of joint research results (4th SWGC invitation) August 2016: VACI, SW6 keynote address at Vietnam government hosted International Water

Oct. 2016

Dec. 12-16, 2016 Concluded MOU on demo application of SWG technology after each expert

including managing director visited site (SWG research group and waterworks

company in Hai Duong province)

Received SWG, fWRM letter of business intent from NAWAPI Dec. 29, 2016

Project results

- Vietnam urgently needs an efficient and scientific system for smart water management in line with the country's spectacular economic development. Accordingly, cooperation is required at the government level.
- Promotion of the project is carried out as a phased joint research venture by examining Vietnam's LOI along with the SWG research project.

2019~2020

Pilot Testing

- 1~5 m³/day
- · Simple feasibility study
- . Biz Model for SWG Application

Demonstration

- > 500 m3/day (T.B.D.)
- . Water for more than 1000 people
- · Detailed design for full-scale project
- . Establishment of MP for Hung Yen Province

Full-scale Project

> 10,000 m3/day (T.B.D.)

- · Full-scale water supply and management system

VACI - 2018

VIETNAM INTERNATIONAL WATER WEEK VACIOUS

Korean Smart Water Grid Session

1. Sectofive agendo

Meeting Described		FIR min		
	Destru	Districted local Sing (miss)	Presentation / Discoular repla	Carbour quater
	1		Opening remork	Riof, Ryong-teet, Ton (Chatr)
	. 4	18.	Smart Worse Clina In Karasa - from Inlaw in Residentics.	mel sargina (se resimin unis.
Marriery plan in densit	3	18	Streeting Worse Sacrety In Chilippe Regions by Utilizing Multiple Wisson Security	Ch. Datah Was (Eyesyan technis
	*	·u	Basi tina manhoring in owner naturally for owner Latin/MAII formed Smart Matering is Corner	Di. Smit (in Chat (Sprint)
		36	Here Extraminal based's by introducing Januar Warni Gold technology	Se Maria Chai (Kinama)
		18	Supportion of board orner nature received marrieding system in Cores	for temperature the Charles
		.96	Famil Dennier, Opportunities and Challenga in opplication of Europe Special Control of Control	All Speakers

et +82312907645 , Fam. +82312007549 mail: bytom@gmail.com Tel: +82428707365; Fax: +82428707399

International Cooperation: On-going Project

Jordan – Karak (FS) and Northern Governorates (MP)

Jordan

- Absolute shortage of water resources (water supply limited to 32 hours per week)
- Difficulty securing water source autonomy (Israel, Syria)
- Aging water facilities, dependent on foreign aid
- Water problems worsened due to inflow of about 2 million Syrian refugees
- Urgent need for SWG technology

Overview

- ► Daily water supply per person: 154
- ► Main water source : Yarmuk & Jordan rivers:
- ▶ Leak ratio : 40-60%
- ➤ World No. 2 in water scarcity
- ▶ Population : estimated 7 million inc. of refagee on sharp rise)

Jordan's Water Authority Minister hosted conference

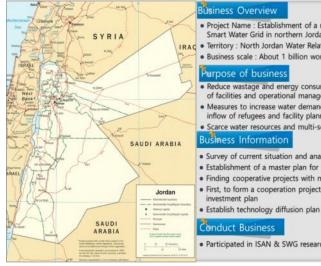
Jordan Amman purification plant

Project procedure

May 2015	Gave education on SWG technology to Jordan public servants (KOICA education project
June 2015	Discussed SWG technology exports with KOTRA Amman trade authority (building)
Aug. 2015 - Jan. 2016	Prepared report on expansion of Jordan's water treatment market
April 2016	Dispatched SWG inspection team and cooperated with relevant organizations
May 2016	Conducted feasibility study on overseas market expansion
June 2016	Concluded LOI with Water Authority of Jordan
June 2016	Overseas construction association presented & evaluated feasibility study (selected)
Aug	Did feesibility study on construction of Smart Water Grid for Jordan's Karak

- July 30-Oct. 15, 2016 : Conducted 1st & 2nd field study
- Nov.28-Dec. 26, 2016 : 3rd field study & final reporting session

Project results


Construction planning for Smart Water Grid

- Devise facility planning considering efficiency-enhancing measures when applying Smart Water Grid, and by figuring out water supply system of Karak region and status of management of water sewage operations
- Establish system application and operation plan by classifying project area as 40 small blocks
- Formulate real-time management and suitable plan for water capacity distribution for water and sewage facilities via management of integrated operations
- Set up plans for wastewater and energy reduction through maintenance project after construction of Smart

1000	BACTER	CLANIE	THE REAL PROPERTY.
QAUS	- 4	-	- 13
SHONAN	. 3	11.	2
MAJAN	9.	22	- 3
TIABA	4.7	1.	3.
CHE HEADMAN	2	12	(87)
SHOHWAY	1.	2	1/2
SUCTANS		2	(8)
WADEWENDH	16.	2.	8
Отемин	9	2	3
ABU HMOUR			3.
CHARGE	1	3.	(0x)0
SHARE	1.	1.	
THALLASIN	4	11	(8)
SELECTA.	4	14	2
CHEWR NAZAKA	37	- 2	(A))
GHWAR SAFT	1.	2	
CHANAR YO'A	1	3	(a))
GWEERH	1	1.	4

Northern Jordan SWG Master Plan Establish Business

Business Overview

- · Project Name: Establishment of a master plan for building a Smart Water Grid in northern Jordan
- IRAC Territory : North Jordan Water Related Areas
 - Business scale : About 1 billion won

Purpose of business

- Reduce wastage and energy consumption due to inefficiency of facilities and operational management
- Measures to increase water demand due to urbanization and inflow of refugees and facility planning
- · Scarce water resources and multi-source water supply plan

Business Information

- Survey of current situation and analysis of national policy
- · Establishment of a master plan for building Smart Water Grid
- · Finding cooperative projects with master plan
- · First, to form a cooperation project and propose an

· Participated in ISAN & SWG research group

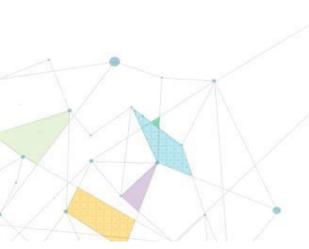
International Cooperation : On-going Project

K-water – ADB – Local Gov. partnership for SWM in South Asia

- > Title Promoting Smart Drinking Water Management in South Asia Cities
- > Duration 2016~2020

Completed(3)	Planning(4)	
Dhaka, Colombo, Chennai	Khulna, Male, Thimphu, Kolkata	

- Budget 2.7 million USD
 - * ADB 1.5 million, e-asia fund 1 million, K-water 0.2 million(in-kind)
- Partnership



Reference

- Proceeding of Indonesia-Korea One-day Workshop on Smart Urban Water Works Management, 2018
- 2. Proceeding of Smart Water Grid International Conferenc, 2019
- Digital Disruption in Indonesia Water Supply Sector: Challenges and Opportunity, Directorate of Water Supply Development, DGHS, MPWH, 2019
- Smart Water Management Case Study Report: https://www.iwra.org/swmreport/

Terima kasih

