Sewage Sludge and Food Wastes Problems

CAMB

This is not an ADB material. The views expressed in this document are the views of the author/s and/or their organizations and do not necessarily reflect the views or policies of the Asian Development Bank, or its Board of Governors, or the governments they represent. ADB does not guarantee the accuracy and/or completeness of the material's contents, and accepts no responsibility for any direct or indirect consequence of their use or reliance, whether wholly or partially. Please feel free to contact the authors directly should you have queries.

Organic Waste (Sewage Sludge and Food Wastes) and THP (Thermal Hydrolysis Process) Solutions

> Cambi Korea (Green Energy Center) : SangKyu Hwang (sangkyu7357@gmail.com)

2019.10.29

北排理

Issue Areas of Organic Wastes

Sludge:

State of the art Thermal hydrolysis processes to treat sludge

Food waste and co-digestion:

Biogas plants based on thermal hydrolysis, producing biogas & biofertiliser

CAME

Food wastes

Depending on the level of impurity and sources of the products, food waste/OFMSW (organic fraction of municipal solid waste) feedstock may be required the following pre-treatment technologies for the purification:

- Receiving and manual sorting
- Bag opener
- Shredders
- Screw Cutter
- Milling
- Rotating Drums
- Rotating Trommels
- Screens
- Magnetic separators
- Sterilizer
- Pulper
- Hydrolyser
- Homogenizer

Sewage Sludge

Sewage Water Treatment and Sludge problems

FROM WASTE TO WORTH USING ADVANCED ANAEROBIC DIGESTION

1

北邦建设 C1M-11

"THP" has more than 25 years experience

Slide 9

Today, thermal hydrolysis is a standard technology

Thermal Hydrolysis Globally

Between 80 and 90 facilities

Example : Anyang Sewage Wastewater Treatment Plant

CAME

Status of Domestic Operation

Classification	Existing	ТНР	Remark
Treatment Capacity	630 m ³ /day (DS 10%)		
Days of Retention in Digester (HRT)	30.5 days	15.8 days	
VSR	40.2%	59.3%	Use CAMBI's excellent technology
Amount of Digestion Gas Generated	6,110N · m'/day	18,000N · m'/day	and experience of operation → Maximize treatment efficiency of
Content of Methane Gas (CH ₄)	CH4 55%	CH4 62.8%	digester and minimize retention time
Amount of Cake Generated (Moisture Content %)	187m'/day (80%)	98.2m [*] /day (73%)	
Electricity production (MW)	-	1.6 MW	

Note) The data is based on current operation performance.

More than 20 years of continuous operation for the first CamboTHP plant at HIAS WWTP, Hamar

The Normal Operation Actual Certificate

1. Plant Operation Start Date	Date of 1 Sept	1995
	Operation Year	Operation Hours
	1995-2014	350 d/y, 24 h/d
	Date of 1 Sept Operation Year 1995-2014 2011 2012 2013 2014 Name of Equipment None (only normal maintenance) 2005: Expansion with additio 2006-2007: Expansion with a and a flashtank, by Cambi.	358 d/y, 24 h/d
2. Annual Operation Hours Record		358 d/y, 24 h/d
		358 d/y, 24 h/d
		358 d/y, 24 h/d
	Name of Equipment	CambiTHP
3. Trouble Outbreak Situation, if happened	None (only normal maintenance)	None
4. Plant Modification	2005: Expansion with additional digester, by Cambi 2006-2007: Expansion with additional THP reactor and a flashtank, by Cambi.	

5. Operating results

 Name of Project Hias Wastewater Treatment Plant, Hias IKS (water and waste management company), Hamar, Norway

- Equipment type : Cambi Thermal Hydrolysis

Design capacity: 19 t dry solids (DS)/day

- Actually treated capacity: 11 t dry solids (DS)/day

Substance Type : Sewage Sludge

Volatile Solid Reduction Rate : 63%

Dry Solids concentration in dewatered cake: 38% DS

This is to certify that the above statement is true

References

CAME

Cambi THP at Davyhulme, UK

CAM:

Sludge center (Manchester)

- Increased capacity of existing digesters by nearly 2.5 times
 - Allowed United Utilities to import and treat sludge from other treat ment plants in north-west Engla nd and avoid building a planned new incinerator.
 - The digestion plant serves a pop ulation equivalent of 3 million pe ople

Cambi THP at Blue Plains WWTP in Washington DC (USA) – 4 million p.e.

- PLANNED TRADITIONAL DESIGN
 - 8 digesters = 174 000 m³ designed originally

CAMBI SOLUTION

- 4 digesters = 58 100 m³ (1/3 of)raditional)
- Saved \$200 million CAPEX vs traditional
- Saved >\$20 mill in OPEX/year
- Generate 13 MW (net 10 MW) of clean, renewable power from the CHP Slide 16

FIVE CAMBI PLANTS IN BEIJING 4.2 million m³/d = 48,6 m³/s , 6000 t of wet sludge/day

FIVE CAMBI PLANTS IN BEIJING 4.2 million m³/d = 48,6 m³/s , 6000 t of wet sludge/day

CAME

Beijing Drainage Group (BDG) for Huaifang Water Reclamation Plant (HWRP) project for winning the I WA Gold Prize for category Excep tional Project Execution and Deliv ery at the International Water As sociation - World Water Congress 2018 at Tokyo – Japan. (16-21, Se ptember, 2018)

Madam Lin, the Chairman of BDG group: "The success of this award belongs to BDG and Cambi's coop eration, we thank the two compa nies for their collaborative efforts to work together".

CAMBI THP PLANTS IN BEIJING with Norwegian Minister (2017.7.10)

CAMBI Converting food waste to biogas and fertilizer in 6 cities from Norway to South Korea

Why thermal hydrolysis?

CAME

It changes the properties of sludge at a fundamental level (non-reversible reduction in viscosity)

In addition

- Sterilization Class A Biosolids without reg rowth
- Improved digestion pe rformance increases b iogas production
- Minimized foaming potential

Reduced carbon

footprint

 Friable, minimum odor homogenous cake ea sy to spread on stand ard agricultural equip ment

Where is CAMBI in a wwtp? (Sludge treatment)

Wastewater-to-Energy System

Source: World Resources Institute, 2017

Influence of thermal hydrolysis on overall process

Comparison

Conventional 🦛	Parameters	→ Cambi
3-6%	Digester Feeding DS%	9-12%
20-25	Digester HRT (d)	15-18
Big	Digester volume	Small
Low	Digester Loading rate	High
33-37	Digester Temp (°C)	38-42
6.5-7.5	Digester pH	7.5-8.0
30-45%	Organic VSR%	50-65%
Low	Biogas production (m3/tDS)	High
High	Biogas H ₂ S	Low
20%-25%-30%	Dewatered Cake DS%	30%-35%-40%
Class B (partial)	Biosolids hygienization	Class A (pathogen Kill)
More	Viscosity	Less

CAME

Silue 26

Carbon Footprint (Aecom/MOHURD China study)

Reference Number	Technical Route	Carbon Footprintª
1	Thermal hydrolysis, anaerobic digestion, biogas utilization, heat drying (10% moisture content), coal substitution (e.g., in a power plant or cement kiln)	(500)
2	Anaerobic digestion, biogas utilization, landfill with landfill gas utilization	0
3	Thermal hydrolysis, anaerobic digestion, biogas utilization, land application	200
4	Anaerobic digestion, biogas utilization, compost, land application	450
5	Anaerobic digestion, biogas utilization, land application	950
6	Heat drying(10% moisture content), coal substitution	1,300
7	Composting, land application	2,400
8	Heat drying, gasification, energy recovery	4,750
9	Lime stabilization, land application	4,900
10	Heat drying, incineration, heat recovery	5,900
11	Landfill with landfill gas utilization	6,200
12	Anaerobic digestion, biogas utilization, landfill without landfill gas management	6,300
13	Heat drying (65% moisture content), land application	7,600
14	Heat drying (40% moisture content), land application	10,000
15	Landfill without landfill gas management	30,000

Table 2 Carbon Footprint of Sludge Technical Routes

() = negative.

Based on a typical urban wastewater treatment plant treating 100,000 cubic meters/day, producing 80 tons/day of dewatered sludge with 80% moisture content; carbon footprint indicated as tons of carbon dioxide equivalent/year.

Source: East Asia Department, ADB.

Impacts on carbon footprint

Optimising sludge drying

Summary - Theory

CAME

Without thermal hydrolysis

 Nearly all consumed by drier leaving little for other uses

With thermal hydrolysis

- Nearly 20% more energy in biogas
- 45% reduction in drying energy demand
- Over 4 times more biogas can be diverted to co-generation

Case Study

To consider:

Electric Energy or upgrade to Biomethane

Dry sludge using waste energy from CHP

Pathogen free solids to agri culture

Carbon footprint credits

THANK YOU FOR YOUR ATTENTION...

CAMBI® THERMAL HYDROLYSIS PROCESS FOR ADVANCED ANAEROBIC DIGESTION OF SLUDGE AND FOOD WASTE

- INCREASED RENEWABLE ENERGY
- REDUCED BIOSOLIDS VOLUME
- INCREASED BIOSOLIDS QUALITY (CLASS A)
- COMPACT ANAEROBIC DIGESTION