

AIR POLLUTION AND CHILD HEALTH

P.Enkhtuya, MD.,PhD Environmental health department

This is not an ADB material. The views expressed in this document are the views of the author/s and/or their organizations and do not necessarily reflect the views or policies of the Asian Development Bank, or its Board of Governors, or the governments they represent. ADB does not guarantee the accuracy and/or completeness of the material's contents, and accepts no responsibility for any direct or indirect consequence of their use or reliance, whether wholly or partially. Please feel free to contact the authors directly should you have queries.

Content

- Literature review
- Ambient air pollution
- Indoor air quality
- Prevalence of disease and forecasting
- Environmental health surveillance system
- Further action

Air pollution health impact assessments

Date	Field	Air pollution indicators		
1990-before	 Respiratory system disease 	 SO₂ NO₂ 		
1990-2007	Respiratory system diseaseImmune system	 SO₂ NO_X TSP 		
Since 2008	 Respiratory system disease Cardiovascular system disease Impant impact Burden of disease Indoor air quality Personnel exposure 	 PM10 PM 2.5 SO₂ NO_X O₃ 		

Since 1980, more than 40 health impact assessments were conducted

Indoor air quality is at the level harmful for human health

With the support of WHO

- In 2004-2005
 - 77.8 % of children covered by the study had some kind of disease symptom. Children living in ger or houses with traditional heating source have higher incidence of symptoms of respiratory diseases compared to those living in apartments.
- In 2007
 - Type of fuel directly impacts indoor environment. Combustion heated houses have PM10 (71.19 \pm 83.5 µg/m³) and PM2.5–ын (26.69 \pm 3.4 µg/m³) at the level when they have negative impact on health.

Source: PHI, MOH, Indoor air quality of the ger, 2007

• 2016– UNICEF

 Concentrations of PM inside the schools covered by the survey showed that they exceed Mongolian air quality standards by 3.1-10.05 times which would negatively impact schoolchildren's health.

24 hours average daily concentration of PM10 and PM2.5, 2008-2017, Ulaanbaatar

Indicators	PM10 μg/m³			PM25 μg/m³				
	Ordinary day	Weekend	Warm	Cold	Ordinary day	Weekend	Warm	Cold
7±ð	182.59±178.70	183.05±174.52	95.01±87.00	226.78±200.12	85.65±105.03	85.88±101.25	29.21±19.92	114.10±116.6
Max	2047	1548	576	2047	1010	868	303	1010
P value	0.39		<0.0001**		0.55		<0.0001**	

SOURCE: Enkhjargal A, Burmaajav B[,] Tsegmed S,Suvd B, Unurbat D, Batbayar J, UNEP, 2019, THE AIR POLLUTION HEALTH IMPACT ASSESSMENT IN ULAANBAATAR, MONGOLIA

Ulaanbaatar ambient air PM concentration, 2018

Indicator	РМ10 , мкг/м ³		РМ2.5 , мкг/м ³		
	Mean	95%CI	Mean	95%CI	
Warm	79.2	72.2-86.3	18.9	17.5-20.2	
Cold	199.0	183.9-214.1	126.6	112-140.4	
Total	136	127.6-148.2	74	62.8-80.5	
National	100 μg/m ³ - 24 hours, 50μg/m ³ -annual		50 μg/m ³ - 24 hours,		
standard			25 μg/m ³ -annual		
WHO	50 μg/m3- 24 hours, 20 μg/m3 -annual		25 μg/m3- 24 hours, 10 μg/m3 -		
			annual		

Exceeding percentage of PM10 and PM2.5 from permissible level

Air pollution health impact assessments

- Burmaajav.B and Saijaa. N were initiated the first studies of air pollution health impact assessment.
- Since 2009, PM₁₀ and PM_{2.5}, the most hazardous effects on health, have been measured constantly. Those measurements played important role to assess air pollution impact on population's health.

Hospital admission due to RSD and CVD, by age group and disease category, Ulaanbaatar, 2008-2017

Category of diseases	0-4	5-64	65 over	Total				
Respiratory system disease								
Diseases of pulmonary circulation and other forms of heart (100-109, 126-152)	74 (0.0%)	316 (0.1%)	31 (0.1%)	421 (0.0%)				
Acute upper respiratory tract infections (J00-J06)	190991 (41.5%)	125141 (31.9%)	4013 (10.4%)	320145 (35.9%)				
Influenza (J10-J11)	28220 (6.1%)	21167 (5.4%)	1575 (4.1%)	50962 (5.7%)				
Pneumonia (J12-J18)	122179 (26.6%)	43796 (11.2%)	5582 (14.4%)	171557 (19.2%)				
Rhinitis and Sinusitis (J30-J32)	3823 (0.8%)	40080 (10.2%)	2956 (7.6%)	46859 (5.3%)				
Bronchitis (J40-J42)	711 (0.2%)	37975 (9.7%)	10186 (6.3%)	48872 (5.5%)				
Emphysema (J43)	0 (0.0%)	284 (0.1%)	165 (0.4%)	449 (0.1%)				
Other chronic obstructive pulmonary disease (J44)	12 (0.0%)	8749 (2.2%)	5743 (14.9%)	14504 (1.6%)				
Asthma (J45-J46)	150 (0.0%)	10599 (2.7%)	2366 (6.1%)	13115 (1.5%)				
Other diseases of the respiratory system (J20-J22, J33-J39, J47-J99)	113732 (24.7%)	104559 (26.6%)	6052 (15.7%)	224343 (25.2%)				
Total	459892	392666	38669	891227				
Cardiovascular disease								
Diseases of pulmonary circulation and other forms of heart (100-109, 126-152)	207 (25.2%)	44790 (11.9%)	6255 (3.8%)	51252 (9.5%)				
Hypertensive diseases (I10-I15)	0 (0.0%)	158964 (42.4%)	79308 (48.2%)	238272 (44.1%)				
Ischaemic heart diseases (I20-I25)	2 (0.2%)	82483 (22.0%)	51623 (31.3%)	134108 (24.8%)				
Cerebrovascular diseases (I60-I69)	417 (50.7%)	53002 (14.1%)	21029 (12.8%)	74448 (13.8%)				
Diseases of arteries, veins and lymphatic vessels (I70-I99)	196 (23.8%)	36000 (9.6%)	6458 (3.9%)	42654 (7.9%)				
Total	822	375239	164673	540734				

SOURCE: Enkhjargal A, Burmaajav B[,] Tsegmed S, Suvd B, Unurbat D, Batbayar J, UNEP, 2019, THE AIR POLLUTION HEALTH IMPACT ASSESSMENT IN ULAANBAATAR, MONGOLIA

Pneumonia admission in relative risk (RR) and 95% confidence interval for 10 μ g/m³ (mg/m³) change in concentration of pollutants at mean lag 0-3, significance with temperature and wind velocity adjusted in all age

According to the time series analyses all Lags of NO2, SO2 and Lag 2 of PM10, Lag2-3 of PM2.5 were observed significant correlation. If reduce 10 unit of those pollutants hospital admission of pneumonia children under 4 will be declined by 0.06-3.66 percent.

Astma

Эх сурвалж: НЭМҮТ, АШУҮИС, " Агаарын бохирдол, гуурсан хоолойн багтраа өвчний харилцан хамаарал", 2019

School indoor air quality

Indoor air class room PM2.5 concentration:

- Connected to the central heating system: 272.25 (95%CI: 11.86-532.64)
- Local heating system: 635.96 (95%CI: 471.26-800.65)

Rapid assessment of indoor air quality, 2018

The average concentration of PM2.5 in class room with air-purifying devices was less than 58.42 μ g/m³ ordinary room. The effectiveness of air purifier was 29%.

НЭМҮТ, НҮБ-ын ХС.

Nutrition status by age group

KAP survey on air pollution, 2019

- 13.2% Health professionals participated training on air pollution and health
 - Lack of ability to provide counselling on prevention of air pollution exposure

Environmental health surveillance program

- The website was developed at the official website of NCPH: orchin.ncph.gov.mn.
- All data RSD, CVD, meteorological, air pollutant since 2018 is uploaded in UB and aimag.
- Health-info program and X10 premium programs were connected

Summary

Thank you for kind consideration