This is not an ADB material. The views expressed in this document are the views of the author/s and/or their organizations and do not necessarily reflect the views or policies of the Asian Development Bank, or its Board of Governors, or the governments they represent. ADB does not guarantee the accuracy and/or completeness of the material's contents, and accepts no responsibility for any direct or indirect consequence of their use or reliance, whether wholly or partially. Please feel free to contact the authors directly should you have queries.

Promoting Eco-friendly measures to mitigate impacts of linear infrastructure on wildlife: From best practice prescriptions to implementation

Dr. Vinod Mathur

Director Wildlife Institute of India vbm@wii.gov.in

Training programme on Building capacity for conserving and managing the natural capital during the planning and implementation of transportation projects in South Asia 15-19 July 2019, Wildlife Institute of India, Dehradun

Background and rationale

- Roads, railway lines and power lines traverse many of India's wilderness areas, fragment wild habitats and result in injury/ mortality of animals.
- Progressive and rapid growth trends in linear development sectors pose the greatest challenge in ensuring that development and conservation become complementing goals in the national interest

Background and rationale

- Harmonising biodiversity conservation and linear developments requires mainstreaming biodiversity conservation in linear developments.
- All infrastructure development Ministries/ Departments/ Agencies both at the Central and State levels must harmonize their policies/ plan/ activities with environmental conservation standpoint.
- Granting Environmental Approvals must not become a *'fait accompli'* process requiring *'retrofitting'* but should be based on *'pro-active planning'*.

India's Linear Infrastructure Development Philosophy: *Mainstreaming*

Mainstreaming is best understood as an attempt of modifying larger development strategies by incorporating biodiversity goals for both development and conservation.

- Development without Destruction
- Development with Design

Mainstreaming Approaches

Linear infrastructure developments need to be made 'animal friendly' to provide pathways for movement of species and be 'SMART' and 'Green' to effectively mitigate the ecological impacts of roads, railway line and power lines, when routed through sensitive ecosystems and habitats.

Green infrastructure must promote both smart growth and smart conservation

Green Infrastructure: *Principles*

- Sensitive planning and design to protect wildlife
- Connectivity is the key
- Context matters
- Grounded in science, land use theory and practice
- Pre-identifies ecologically significant lands and suitable development areas
- Designed to provide a framework for growth
- Planned and protected *before* development

Progressive Trends in Linear Development Sectors in India

Road sector	NATIONAL HIGHWAYS	STATE HIGHWAYS	OTHER ROADS		
	1,00,475 km	1,48,256 km	49,83,579 km		

Source: Ministry of Road Transport and Highways (http://pib.nic.in/newsite/PrintRelease.aspx?relid=133917)

Contracts for 5331 km length of national highways have been awarded while 3480 km have been constructed in 2015-16.

SI. No.	NHDP component	Total length (km)	Completed length (km) as on 30.10.15	Under implemen -tation (km)	Balance for award of civil works (km)	Estimated cost (Rs. in crores)
1.	GQ under NHDP Phase I	5,846	5,846	0	0	30,300 (NHDP Phase I) + 34,339 (NHDP Phase II) = 64639
2.	NS-EW Corridors under NHDP Phase I & II	7,142	6,414	461	267	NHDP Phase I & II
3.	Port Connectivity under NHAI	402	379	23	0	
4.	Other NHs with NHAI	1859	1518	341	0	
5.	NHDP Phase III	12,403	6,634	3,602	2,167	80,626
6.	NHDP Phase IV	20,000	2,441	8,034	9,525	27,800
7.	NHDP Phase V	6,500	2,264	1,401	2,835	41,210
8.	NHDP Phase VI	1,000	0	135	865	16,680
9.	NHDP Phase VII	700	22	19	659	16,680
	Total	55,852″	25,518	14,016	16,318	247,635

Progressive Trends in Linear Development in Rail Sector in India

Gauge-wise Indian Railways network (percentage share).

GAUGE	ROUTE KM	RUNNING TRACK KM	TOTAL TRACK KM
Broad Gauge (1676 mm)	86.62	89.96	90.99
Meter Gauge (1000 mm)	9.83	7.49	6.78
Narrow Gauge			
(762 mm and 610 mm)	3.56	2.56	2.23
Total (km)	64,600	89,801	115,062

Source: Ministry of Railways (2012)

Available guidance

Edited by Jon P. Beckmann, Anthony P. Clevenger, Marcel P. Huijser, and Jodi A. Hilty

Roads, Sensitive Habitats and Wildlife

Environmental Guideline for India and South Asia

> Asha Rajvanshi Vinod B. Mathur Geza C. Teleki Sujit K. Mukherjee

WILFY Blacksond

nvironmental Pollution

The Ecology of Transportation: Managing Mobility for the Environment

the December and Little 1 - Division of the r

useful metalizes

Why a new guide?

- Provide solutions so that conservation values and actions are aligned to land development, growth management and linear infrastructure planning in the Indian context.
- Means to sensitize developers to plan, implement and pursue development objectives in sink with conservation priorities.
- Serve as a 'How to' guide for planning biodiversityfriendly developments especially by agencies such as NHAI, Indian Railways, Powergrid Corporation.

The new Best Practice Guide 'Eco-Friendly Measures to Mitigate Impacts of Linear Infrastructure on Wildlife'

High Resolution:

http://www.wii.gov.in/images//images/documents/eia/EIA_BPG_Report_2017.pdf

Low Resolution:

http://www.wii.gov.in/images//images/documents/eia/EIA_BPG_Report_2017_low.pdf

Contents

Foreword:	 Hon'ble Minister of Env., Forest and Climate Change DGF&SS, MoEF&CC Chairman, National Highway Authority of India (NHAI) ADG (WL) and Member Secretary, National Tiger Conservation Authority 	y (NTCA)
Preface		
PART 1:	INTRODUCTION	
CHAPTER 1	RELEVANCE OF MAINSTREAMING BIODIVERSITY CONSER IN LINEAR INFRASTRUCTURE DEVELOPMENT	VATION
CHAPTER 2	PROGRESSIVE TRENDS IN LINEAR DEVELOPMENT SECTO INDIA	ORS IN
CHAPTER 3	REGULATORY PROCEDURES FOR ENVIRONMENTAL CLEA OF PROJECTS	RANCE
CHAPTER 4	OVERVIEW OF ECOLOGICAL IMPACTS OF LINEAR INFRASTRUCTURE	more

Contents...

PART 2: MITIGATION OF IMPACTS OF ROADS AND RAILWAY LINES

- CHAPTER 5 MITIGATION PRINCIPLES
- **CHAPTER 6** GENERIC GUIDELINES FOR MITIGATING IMPACTS ON WILDLIFE
- CHAPTER 7 FACTORS ENHANCING PERMEABILITY OF CROSSING STRUCTURES
- CHAPTER 8 MITIGATION MEASURES FOR CONNECTING LANDSCAPES AND SPECIES
- CHAPTER 9 STRUCTURAL MEASURES FOR REDUCING ANIMAL MORTALITY
- CHAPTER 10 NON-STRUCTURAL MEASURES FOR REDUCING MORTALITY: SIGNAGE AND WARNING SYSTEMS
- CHAPTER 11 NOISE ATTENUATION MEASURES

PART 3: MITIGATION OF IMPACTS OF POWERLINES

CHAPTER 12 MITIGATION OF ECOLOGICAL IMPACTS OF POWERLINES ON BIRDS

PART 4: AVAILABLE GUIDANCE

Glossary Plates

Overview of Ecological Impacts of Linear Developments

Fragmentation of forests by rail and road infrastructure

(Picture: A. Pragatheesh and Mohamed Zahir)

Figure 3.3. Habitat fragmentation results in far greater reduction in area of available habitat for species in bisected patches (*Source: Rajvanshi et al. 2013*).

Mortality of Wild Animals

Barrier Effect...

Barrier Effect: *What are the implications?*

Modelling the 'barrier effect' on Indian roads

We have modelled the probability of successful crossing for different animals.

This probability is a function of road characteristics (width, verge), traffic characteristics (volume, heterogeneity) and speciesspecific characteristics (body length, behaviour, average group size and average time taken to cross the road)

Traversability models showing probability of hit (red lines) or successful crossing (green lines) of (A) Tiger (B) Leopard (C) Gaur and (D) Chital on NH 7 with respect to available traffic volume (452 vehicles/hr) and heterogeneity as on March, 2015

Traffic volume/hou

(C): Gaur

Summary of Major Impacts on Taxonomic Groups...

Table 4.2. Relative impacts of roads, railway lines and powerlines on different animal groups.

		MAJOR IMPACTS														
Таха		Habitat loss		Habitat fragmentation			Disturbance-induced behavioural changes			Injury/mortality			Impediment to movement			
			.	Å		.	Å		.	Å		.	Å		.	
	Large mammals															
Mammals	Medium and small mammals															
	Arboreal animals/gliders															
	Birds															
	Reptiles															
	Amphibians															
	Invertebrates															
							K	ley	High	impact		Moderat	e impact		Pos	sible impact

General Guidelines for Mitigating Impacts on Wildlife

The SMART roads must essentially aim to reduce injury/ mortality related to linear infrastructure and make linear structures conducive for movement of animals across it.

Engineering Options

BRIDGES

UNDER PASSES

Mitigation Measures for Connecting Landscapes and Species

Factors for Enhancing Permeability of Crossing Structures

STRUCTURE DESIGN AND SIZE

LOCATION

SPACING

BOTTOM MATERIALS AND DESIGN

NATURALNESS

APPROACHES

GOOD PRACTICE 'DO's AND DON'T's'

The efficacy of structures must be determined based on optimum benefits to facilitate animal movement across passages.

Landscape Specific Measures

TIGER AND ELEPHANT LANDSCAPES

Structural Measures for Reducing Animal Mortality

Roadway

Managing roadside habitat to reduce attractiveness for birds

Creation of Alternative Sites for Thermoregulation of Snakes

Fencing along roadside habitat to prevent herpetofauna getting on to the roadway (left), and herpetofaunal crossing structure across road (above)

Non-Structural Measures for Reducing Mortality: Signage and Warning Systems

CAUTION SIGNS

Do's & Dont's

Project phase	Do's	Don'ts
Planning and design phase	 Organise a good team of professionals to review technical, financial and environmental/ecological aspects of the project. Include an ecologist/wildlife expert on the team if the linear development would be routed through forested sections and natural landscapes. Avoid aligning roads and railway line along or through sensitive habitats (wildlife movement corridors, flight paths of birds, areas of high biodiversity values, specialised habitats e.g. pools, dens, roosting sites, caves etc.). Identify feasible alternatives of alignment to review the merits of different sites to arrive at the 'least impact' options. Conduct a rigorous assessment of impacts on key wild species of animals and plants and habitats to integrate any special considerations in design features and structures. Plan appropriate designs that facilitate animal movements Include estimates of costs for constructing mitigation structures in the financial proposal to avoid cost overrun. Prepare a schedule for implementation of mitigation measures, and institutional responsibilities for mitigation measures. 	 Do not undermine the importance of inter-agency coordination Do not avoid consultation with wildlife experts and conservation agencies to understand challenges for wildlife that may come in way of environmental decision- making Do not avoid field based surveys for generating primary information for impact assessment reports as a weak EIA would lead to subsequent delays in the implementation of the project Do not split sections of the same road, rail or pipeline passing through different land use or states as separate projects for ease of implementation as this may pose difficulties in assessing the landscape level impacts on wildlife habitats and species with large home ranges Do not plan mitigation structures around a single species but around all species of conservation importance in a landscape Do not suggest mitigation measures without considering local ecology. Measures suitable for implementation in one landscape may not work in another site with different ecological conditions
Construction phase	 Recommend construction schedule to avoid breeding/migration season of important species. Take care to avoid direct impacts to land, water and habitats of wild animals due to labour camps, storage sheds and parking lots. Initiate construction of mitigation structures along with road/rail upgradation projects so that damage/loss during this phase are minimised. Install sufficient drainage works under all access roads to avoid flooding land and damaging streams. Protect top soil and implement measures to control soil erosion. Avoid/minimise removal of natural vegetation. Take measures to prevent animal injuries and mortality during earthwork, clearing of vegetation, and managing pools and streams. Enforce good behaviour by construction workers to prevent illegal hunting, fishing and pilferage of resources. Restore cleared areas wherever possible 	 Do not add to direct and physical impacts by careless material management and inducing avoidable disturbance Do not violate conditions and specifications agreed upon as part of mitigation. Do not dump/stack construction material inside sensitive habitats. Do not dispose debris and other excavated material near water bodies and in valley bottoms. Do not wash vehicles or change lubricants in waterways or wetlands.

Glossary

Barrier effect: The extent to which roads or other linear features prevent, or filter animal movement. The barrier effect can be quantified by species, populations and so on

Bottleneck: Defined area (e.g. Habitat corridor, or patch which due to the presence of transport infrastructure or other land use, has become a limiting factors to animal migration or dispersal

Corridor: Components of the landscape that facilitate movement of organisms and processes between areas of intact habitats

Meta-population: Set of local populations of a species within some larger area, where genetic diversity is maintained by the dispersal of individuals from one local population to another

Road verge: The vegetated area adjacent to roads; generally located outside the road shoulder

Plates (representative pictures of animal groups)

Animal groups	General animals considered (specific to India)
Large carnivores	Tiger, lion, common leopard
	Striped hyena, grey wolf, golden jackal, wild dog, Sloth bear
Large herbivores	Elephant, gaur, rhino
Medium-sized mammals	Ungulates: Sambar, spotted deer, nilgai, wild boar
	Primates: Rhesus macaque, northern plains langur
Small mammals	Jungle cat, leopard cat, Common palm civet, ruddy mongoose
Amphibians	Toads, frogs, salamanders
Reptiles	Snakes, lizards, turtles, tortoises

bttp://www.flickr.com/photos/wribs/837038964/in/set-72157603351082588/

The guidance in practice...

Underpass on National Highway 7 under construction

Broadening of water drainage structure on National Highway 7 under construction

Design features to enhance use of underpass by wild animals

Design features to enhance use of underpass by wild animals

VIDEO Wild Dog Use

The need for R&D efforts in mitigating negative impacts of linear developments in the Rail Sector

Rail-induced mortality of wild elephants...

Seismic Sensing

- Seismic waves are traveling vibrations that transport energy from any vibrating "source" region throughout the Earth.
- Mainly categorized into 4 types of waves:
 - Body waves: Primary (6 km/s) and Secondary (4 km/s)
 - Surface waves: Love and Rayleigh.

Seismic energy transmitting into the earth and propagating along the surface of the earth as Rayleigh waves with a velocity in the range of 250 m/s [CE O'Connell-Rodwell - 2007]

Seismic Sensors

Seismometer *f_n* <1 *Hz*

Accelerometer

Geophone $f_n : DC-200 Hz$ 4.5 Hz< $f_n < 40 Hz$

Internal structure of Geophone

elephantsingleaxis_4ch2win17 signal

Feasibility Trials at Rajaji National Park, Dehradun

(A CSIR-CISO and Wildlife Institute of India collaborative project)

Phase I: Feasibility Study for Development of Intelligent Seismic Sensing Node for Elephant Movement Detection in the Context of Mitigating Threats to Wild Elephants by the Railways

Objectives

- Generation of Seismic Signature of Elephants
- Development of state of the art techniques for detection of moving elephants
- Preliminary field trials to establish Proof-of-concept in the context of mitigating threats to wild elephants by the railway tracks and operations.

GPS track route of elephant movement

Seismic data generation using captive elephants

Feasibility Trials at Rajaji National Park, Dehradun

(A CSIR-CISO and Wildlife Institute of India collaborative project)

Design of Experiments

- Data generation were performed at different locations: plain grassland, uphill-downhill region, riverbed, near railway track.
- Number of elephant moving: single, two and three.
- Gender: One tusker and two female elephants.

Observations

- Seismic sensors could detect single elephant movement from a distance of approximately 30-50m.
- Seismic signal strength was high when the elephants were climbing up or down a slope.
- Seismic signal strength was low in the river bed due to loose soil and discontinuity.
- Typically the time interval between two footsteps is about 0.5 second in case of single elephant walking.
- Typically presence of lower frequencies which overlaps with other background noises.

Real-time data processing unit

Top graph shows filtered seismic signal of single elephant walking (blue coloured). Red portion of the signal indicates automatic detection.

Train movement at Vedic Nagar

Seismic Detection System

CSIR-CSIO has designed 'Seismic Detection System' during 12th FYP OMEGA.

It is a customizable intelligent system which is capable of interfacing with a number of seismic sensors and a number of detection and recognition algorithms.

This system can be adapted for a wide range of applications by training it in the relevant experimental sites.

Technology/S&T Gap

- Currently, non-technological measures like warning sign boards are put
- Slowing down the vehicles/trains
- Manual patrolling by human security personnel for identifying the presence of animals.

Elephant warning signboards near railway track crossing through Rajaji National Park, Dehradun

Presence of elephant dung on railway track

Nature Nurtures... Conserve Nature

Dubi Shapiro

Together we can build a frame work that nourishes and not depletes our natural assets...

Thank You !