

Determining Wastewater Treatment Standards; Discharge to Surface Water

Emma Marsden Senior Environment Specialist, SDES

The views expressed in this presentation are the views of the author/s and do not necessarily reflect the views or policies of the Asian Development Bank, or its Board of Governors, or the governments they represent. ADB does not guarantee the accuracy of the data included in this presentation and accepts no responsibility for any consequence of their use. The countries listed in this presentation do not imply any view on ADB's part as to sovereignty or independent status or necessarily conform to ADB's terminology.

Sources of Wastewater

Determination applies to untreated discharges to surface water of,

- Process wastewater (industrial)
- Sanitary wastewater (domestic)
- Stormwater runoff

Discharge to sewer connected to a municipal wastewater treatment plant \rightarrow national pre-treatment requirements, operator to confirm can accommodate the flow and load

Factors to Consider

- 1. National standards for effluent discharge and the applicable ambient WQ (if absent use equivalent)
- 2. Good international industry practice for sector or equivalent, apply if more stringent than national

standards

Table 5 - Effluent Guidelines

Contraction of the local division of the loc	e runoir, and cooling water)
Parameter	mg/L, except pH and temp
pH	6-9
TSS	50
Oil and grease	10
Total residual chlorine	0.2
Chromium - Total (Cr)	0.5
Copper (Cu)	0.5
Iron (Fe)	1.0
Zine (Zn)	1.0
Lead (Pb)	0.5
Cadmium (Cd)	01
Mercury (Hg)	0.005
Arsenic (As)	0.5
Temperature increase by thermal discharge from cooling system	 Site specific requirement to be established by the EA. Elevated temperature areas due to discharge of once-through cooling water (e.g., 1 Celsus above, 2 Celsus above, 3 Celsus above ambient water temperature should be minimized by adjusting intake and cutfail design through the project specific EA depending on the sensitive aquatic ecosystems around the discharge point

Parameter	Units	Gadebar			
		Hezerdous Wesle Landfills		MSW Landlin	
			Monthly Arg	Dely Max	Month Avg
8004		229	38	140	अ
рH		6-8	6.0	69	5-9
Tate Suspended Solida	ngt	- 10	27	8	27
Ammonia (as N)	#91.	10	4.9	-10	- 43
Atunic	ngi.	1.1	0.94		
Oxymium	ngt.	1.1	0.45		
Zric	ngt.	0.505	0.296	0.20	0.11
a logited	ingt.	2042	6019	0.003	0.014
Araine	ngt.	9,024	6815		
Berzaic Acid	mpt.	0.115	0.675	0.12	0.071
NgRfalen	egt.	0.159	6.622		
p-Cressi	egt.	0.024	0.015	0.025	0.014
Plend	ngt	0.048	0.029	8 826	0.015
Pyndrae	mpt.	8.672	0.025		

Table 2. Effluent Levels for Health Care Facilities			
Pollutants	Units	Guideline Value	
pH	S.U	6 - 9	
Biochemical oxygen demand (BODs)	mg/L	50	
Chemical oxygen demand (COD)	mg/L	250	
Oil and grease	mg/L	10	
Total suspended solid (TSS)	mgiL	50	
Cadmium (Cd)	mgiL	0.05	
Chromium (Cr)	mg/L	0.5	
Lead (Pb)	mgL	0.1	
Mercury (Hg)	mgiL	0.01	
Chlorine, total residual	mg/L	0.2	
Phenols	mg/L	0.5	
Total coliform bateria	MPN#/100ml	400	
Polychlorinated dibenzodioxin and dibenzofuran (PCDD/F)	Ng/L	0.1	
Temperature increase	"C	<30	
Notes:			

* MPN = Most Probable Number

^b At the edge of a scientifically established mixing zone which takes into account ambient water quality, receiving water use, potential receptors and assimilative capacity

3

Factors to Consider

- ~~~
- 3. Sensitivity and intended uses of receiving waters, depending on national standards consider tighter standard to protect aquatic ecology and public health

Factors to Consider

- Receiving water's assimilative capacity
 i.e. ability to dilute and absorb pollutants,
 calculate for key parameters; BOD, NH₃₋N, and P
- If national ambient WQ standards met, and sufficient assimilative capacity to protect aquatic ecology and public health discharge is acceptable
- If insufficient assimilative capacity is available design flow and load should be revisited
- If the assimilative capacity already exceeded then the receiving water is degraded, further deterioration of the ambient WQ should be avoided
- Temperature does not result in a >3°C increase over ambient at the edge of the scientifically established mixing zone

Assimilative Capacity Calculations

and ambient NO

concentration?

Upstreamfle

Whatil

What is the downstream concentration as a result of the discharge?

What is the and discharge flow and? discharge flow and?

Assimilative Capacity Calculations

C final =
$$(C \text{ back } * F \text{ river}) + (C \text{ dis } * F \text{ dis})$$

(F river + F dis)

C final > C target	unacceptable
C target > C final	acceptable

C target = ambient WQ standard based on factors 1, 2 and 3 (mg/l)

C final = downstream concentration after discharge (mg/l)

C back = background concentration in river (mg/l)

F river = 95%ile flow in river, for toxic substances use DWF (m³/s)

C dis = maximum concentration in discharge(mg/l)

F dis = flow of discharge (m^3/s)

to work out design flow and/or load based on target concentration:

$$C \text{ dis} = (C \text{ target } * (F \text{ river } + F \text{ dis})) - (C \text{ back } * F \text{ river})$$

$$F \text{ dis}$$

$$F \text{ dis} = (C \text{ target } * (F \text{ river } + F \text{ dis})) - (C \text{ back } * F \text{ river})$$

$$C \text{ dis}$$

C target = ambient WQ standard based on factors 1, 2 and 3 (mg/l) C back = background concentration in river (mg/l) F river = 95%ile flow in river, for toxic substances use DWF (m³/s) C dis = maximum concentration in discharge(mg/l) F dis = flow of discharge (m³/s)

Upstream	Fisheries Wetland	Fisheries Bathing	Downstream	ADB
----------	----------------------	----------------------	------------	-----

Stages in the Wastewater Treatment Process

Preliminary Treatment

- \rightarrow remove coarse solids and debris from the effluent
- \rightarrow physical removal process
- \rightarrow screening and/or commutation
- Grit removal
- Fat, oil and grease removal
- Removal of plastic bags etc.

 \rightarrow no significant effect on the pollution load

Primary Treatment

→ remove organic and inorganic suspended solids

→ physical and/or chemical removal process

- Straightforward settlement, in primary settlement tanks sediment settles to the bottom as sludge, scum skimmed
- Enhanced settlement, with coagulation and flocculation using a polymer added to effluent to aid sedimentation
- pH neutralization if acid or alkali content to wastewater

→ reduces SS of effluent by approximately 50-70%

 \rightarrow reduces the BOD of effluent by approximately 25-50%

Secondary Treatment

 \rightarrow remove dissolved organics and remaining suspended solids

 \rightarrow generally uses biological treatment processes (microorganisms metabolize the organic matter) but can use a physical process

- Conventional filter beds [trickling filters or rotating biological contactors]
- Conventional activated sludge (separate aeration and final settlement tank)
- Sequencing batch reactor activated sludge (aerate and settle in single tank)
- Anaerobic systems (using microorganisms that do not require any oxygen)
- Membrane systems (MBR)

 \rightarrow removal of SS and BOD by 85%, meets basic discharge standard

→ final effluent to receiving waters, or tertiary treatment if tighter standards required

Secondary Treatment

ADB

Tertiary Treatment

 \rightarrow polishing of final effluent to remove any final solids

→ removal of nutrients to tighter discharge standards

- Chemical dosing or enhanced biological treatment for the removal of phosphorus
- Enhanced biological treatment for removal of nitrogen (usually measured as ammoniacal nitrogen)
- Sand filters
- Grassland or reedbed (constructed wetlands)

Disinfection

→ is not a wastewater treatment process
→ may be required by national legislation

- Chlorination (liquid, sodium hypochlorite)
- Ozonation
- UV approach

If treated wastewater is to be used for application to land (irrigation) it must be consistent with public health-based guidance from the WHO <u>http://www.who.int/water_sanitation_health/sanitation-</u> <u>waste/wastewater/wastewater-guidelines/en/</u>

Other Treatment Methods

Stabilization ponds

[facultative and maturation]

Large land take, cheap and skilled labour not needed

Odour especially if anaerobic stage as essentially open septic tanks

Effluent normally 50-70mg/l from facultative pond, following maturation 25mg/l

- Constructed wetland
- Nutrient film removal

Provision for Peak Flows

- Separate wastewater streams to reduce volumes to be treated
- Storm water storage needs to be provided as first flush highly polluting if allowed to overflow to surface water
- From road and hardstanding drainage picks up oils and heavy metals etc.
- For wastewater treatment plant also needed for load balancing
- Slow down flow with the use of weirs and tanks, after first flush send to a CSO (combined sewer overflow)
- Design is to be based on acceptable spill frequency

Septic Tanks

- \rightarrow use only for treatment of sanitary wastewater
- \rightarrow design and install per national requirements
- → but DO NOT use them in areas that are poorly drained or with a high groundwater table
- → locate sufficient distance from groundwater wells and surface waters, up to 500m as a precautionary distance but can be closer depending on soil percolation character
- → ensure system in place for the removal of septic sludge and a facility exists to accept the septage for treatment (otherwise consider using a package sewage treatment)

Thank you.