Piloting Australia's Water Tools to improve Drought Resilience in Cambodia – Support for the UN ESCAP Drought Mechanism

Dr Robert Carr CEO eWater

Dr Daehyok Shin Bureau of Meteorology

Bureau of Meteorology

Erin Telfer Geoscience Australia

UNITED NATIONS ESCAP Economic and Social Commission for Asia and the Pacific

Kelly Hayden

UNESCAP

This is not an ADB material. The views expressed in this document are the views of the author/s and/or their organizations and do not necessarily reflect the views or policies of the Asian Development Bank, or its Board of Governors, or the governments they represent. ADB does not guarantee the accuracy and/or completeness of the material's contents, and accepts no responsibility for any direct or indirect consequence of their use or reliance, whether wholly or partially. Please feel free to contact the authors directly should you have queries.

Coping with Annual Variability embeds resilience

Australia's National Water Tools to Manage Scarcity

- Australia's national tools and methods to build science-to-policy foundation for improving water resource management and use in response to scarcity.
- Applicable to national or regional governments where water scarcity is a threat to human health and wellbeing, economic development and/or environmental sustainability.
- WaterTools enables multiple entry points to build systems and processes to inform and enable water management and policy development at country or sub-national scale.

- ESCAP is the regional development arm of the United Nations for the Asia-Pacific region.
- The Drought Mechanism is a program to Monitor Drought from Space. Through the Drought Mechanism, timely and free access to space-based data/products and services are provided to participating countries, who also receive training and other capacity building.
- eWater, Geoscience Australia and The Bureau of Meteorology are enhancing the ESCAP Cambodian Drought Mechanism pilot by integrating the WaterTools suite to supplement the space-based drought metrics with water balance and water availability tools to improve Cambodian Farmer's awareness of risk through CAVAC, a DFAT program to increase productivity and incomes for smallholder farmers in Cambodia.

Water Availability Analysis Workflow

What is the Digital Earth Australia Open Data Cube?

Annual geomedian images of Cambodia 1988-2017

Annual geomedian images of Cambodia

- · Created by Erin Telfer and Norman Mueller, May 2018
- · Geomedian images based on:
 - Roberts, D., McIntyre, A., & Mueller, N. (2017). High-dimensional pixel composites from earth observation time series. IEEE Transactions on Geoscience and Remote Sensing, 55(11), 6254– 6264.
 - <u>https://github.com/GeoscienceAustralia/datacube-stats/tree/master/datacube_stats</u>

~30 Year Water Observations from Space (WOfS)

Water forecasting services for Australia Bureau of Meteorology

TIME	SERVICES	DECISIONS		
1-72 hours	Flood Forecasts	Emergency Response		
7-10 days	7-Day Streamflow Forecasts	River Operations		
3-12 months	Seasonal Forecasts	Water Allocations and Supply Operations		
Multi years	Scenario Projections	Water Supply Planning		
	eWater Digi	tal Earth AUSTRALIA Australian Government Bureau of Meteorology		

Water allocations and seasonal water forecasts

treamflow 3-month forecast

eWater Source - Integrated supply and demand modeling of water quantity and quality from local to basin scale

Australia's System of Entitlements and Allocations Recognises Water as an Asset

- A Water <u>entitlement</u> is a right to a share of the water available in the river system each year as a maximum volume of water that can be taken.
- Water has different levels of reliability depending on whether it is held in dams or dependent on local rainfall etc. These are generally divided into High Reliability (>90%) and Low Reliability (<90%)
- Users have different water 'products' that they can access depending on the type of <u>needs</u> (irrigators, cities etc).
- Each year, depending on the seasonal conditions, an annual <u>allocation</u> is made to each license holder as a percentage of the entitlement
- Some Allocations and Entitlements may be traded subject to regulations and approvals

Water Access in the River Basin by Entitlement Holders

	Options			None Internal Spilling Allow Borrow above Target							
Override Owner		ide Owner	Downstream State Owner		▼ False						
St	storage Ownership										
	Owner	Capacity Share % 30		Capacity ML	Initial Storage Share %	Initial Storage ML					
	Upstream State Owner			349500	30	349500					
	Downstream State Owner	70	0 815500		70	815500					
4											

"Owners" might include:

- Jurisdictions: States, Provinces etc.
- **Sources**: Surface, Groundwater, Desal, Recycled etc.
- Sectors: Hydropower, Irrigation, Urban, Environment etc.
- Social/Political: Social groupings, Economic Groupings

Policy is reflected in agreements between stakeholder groups which defines relative **Equity**

National Water Account

www.bom.gov.au/water/nwa

- Published online
- Input from many jurisdictional agencies

Water Information	Regulations	News and events	About						
NWA Context State	ements Notes	Accountability Statement		References	Select a	Water Region 🔎			
Water Assets and Wa	ter Liabilities Cha	anges in Water Assets and	Water Liabilities	Physical Wat	er Flow				
Murray-Darling Basin									
Physical Water	Flow								
					Data	2010			
					Туре	ML			
WATER INFLOWS									
E Connected Surfac	ce Water Inflows					47,122,027			
📄 Groundwater Inf	lows								
15.1 Groundwate	er inflow from out	tside region							
15.1.1 Regional gr	oundwater inflow				Estimated	2,578			
15.1.2 Sea water i	ntrusion into aquife	r <u>s</u>			Estimated	57			
15.1.3 Other lump	ed groundwater infk	ow from outside region			Modelled	10,400			
15.2 Groundwate	er recharge								
15.2.1 Diffuse gro	oundwater recharge	from landscape water			Modelled	1,753,711			
15.2.2 Groundwate	er recharge from co	nnected surface water			Modelled	204,390			
15.2.6 Managed ac	quifer recharge				Measured	5,037			
TOTAL Groundwa	ater Inflows					1,976,173			
TOTAL WATER	INFLOWS					49,098,200			
WATER OUTFLOW	/S								
🖃 Connected Surfac	ce Water Outflow	VS				43,517,124			
🕂 Groundwater Ou	tflows					891,050			
TOTAL WATER	OUTFLOWS					44,408,174			
E Unaccounted-for	difference					1,085,123			
CHANGE IN WA	ATER STORA	GE				3,604,903			

Monthly Rainfall, PET, Flow and SPEI for subcatchmen

Flow Rain PET SPEI

4

Monthly SPEI for Stung Sreng at Kralanh

Conclusions

- Investment in monitoring networks, quality assurance, data storage and management systems is important for successful implementation of advanced tools.
- However a blend of remote sensed information and ground-truthing can provide significant insights and guide investment choices through common format water accounts.
- Australia's WaterTools provide a robust scientifically defensible platform to test development scenarios and support sustainable policy from local to national scale.
- Come see us for live demos and <u>lots</u> more detail at "Australian Tools for Water Management" Friday 9am

